DOI QR코드

DOI QR Code

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O. (Department of Civil Engineering, Dicle University) ;
  • Hayalioglu, M.S. (Department of Civil Engineering, Dicle University) ;
  • Gorgun, H. (Department of Civil Engineering, Dicle University)
  • 투고 : 2009.06.08
  • 심사 : 2009.10.21
  • 발행 : 2009.11.25

초록

The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

키워드

참고문헌

  1. Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections", Comput. Struct. 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. Almusallam, T.H. (1995), "Effect of connection flexibility on the optimum design of steel frames", Proc. Int. Conf. on developments in computational techniques for civil engineering, Edinburgh.
  3. Alsalloum, Y.A. and Almusallam, T.H. (1995), "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames", J. Constr. Steel Res., 35(2), 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
  4. American Institute of Steel Construction (1989), Manual of steel construction: allowable stress design, Chicago, Illionis.
  5. Arora, J.S. (1989), Introduction to Optimum Design, Mc Graw-Hill, New York.
  6. Chen, W.F. and Kishi, N. (1989), "Semirigid steel beam-to-column connections: data base and modeling", J. Struct. Eng. ASCE, 115(1), 105-119. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(105)
  7. Chen, W.F. and Lui, E.M. (1991), Stability design of steel frames, Baco Raton, CRC Press, Florida.
  8. Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc., New York.
  9. Csebfalvi, A. (2007), "Optimal design of frame structures with semi-rigid joints", Periodica Polytechnica-Civil Eng., 51(1), 9-15. https://doi.org/10.3311/pp.ci.2007-1.02
  10. Cunningham, R.J. (1990), "Some aspects of semi-rigid connections in structural steelwork", Struct. Eng., 68(5), 85-92.
  11. Degertekin, S.O. (2008a), "Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods", Struct. Eng. Mech., 29(4), 391-410. https://doi.org/10.12989/sem.2008.29.4.391
  12. Degertekin, S.O. (2008b), "Optimum design of steel frames using harmony search algorithm", Struct. Multidiscip. O., 36(4), 393-401. https://doi.org/10.1007/s00158-007-0177-4
  13. Deren, H., Uzgider, E., Piroglu, F. and Caglayan, B. (2008), "Steel structures",(In Turkish), Caglayan Kitabevi, Istanbul.
  14. Dhillon, B.S. and O'Malley, J.W. (1999), "Interactive design of semirigid steel frames", J. Struct. Eng. ASCE, 125(5), 556-564. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(556)
  15. Euronorm (1993), "European Wide Flange Beams", 53-62, CEN, Brussels.
  16. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  17. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simul.-T. Soc. Mod. Sim., 76(2), 60-68.
  18. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addisson-Wesley, Reading.
  19. Hayalioglu, M.S. and Degertekin, S.O. (2004a), "Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections", Steel Compos. Struct., 4(6), 453-469. https://doi.org/10.12989/scs.2004.4.6.453
  20. Hayalioglu, M.S. and Degertekin, S.O. (2004b), "Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidiscip. O., 27(4), 259-271. https://doi.org/10.1007/s00158-003-0357-9
  21. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  22. Holland, J.H. (1975), Adaption in Natural and Artificial Systems, The Universtiy of Michigan Press, Ann Arbor.
  23. Ihaddoudene, A.N.T., Saidani, M. and Chemrouk, M. (2009), "Mechanical model for the analysis of steel frames with semi rigid joints", J. Constr. Steel Res., 65(3), 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
  24. Ivanyi, M. (2000), "Full-scale tests of steel frames with semi-rigid connections", Eng. Struct., 22(2), 168-179. https://doi.org/10.1016/S0141-0296(98)00106-0
  25. Jones, S.W., Kirby, P.A. and Nethercot, D.A. (1980), "Effect of semi-rigid connections on steel column strength", J. Constr. Steel Res., 1(1), 38-46. https://doi.org/10.1016/0143-974X(80)90007-3
  26. Kameshki, E.S. and Saka, M.P. (2001), "Optimum design of nonlinear steel frames with semi rigid connections using a genetic algorithms", Comput. Struct., 79(17), 1593-1604. https://doi.org/10.1016/S0045-7949(01)00035-9
  27. Kameski, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semirigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
  28. Kaveh, A. and Moez, H. (2006), "Analysis of frames with semi-rigid joints: A graph-theoretical approach", Eng. Struct., 28(6), 829-836. https://doi.org/10.1016/j.engstruct.2005.10.010
  29. King, W.S. (1994), "The limit loads of steel semi-rigid frames analyzed with different methods", Comput. Struct., 51(5), 475-487. https://doi.org/10.1016/0045-7949(94)90054-X
  30. King, W.S. and Chen, W.F. (1994), "Practical 2nd-order inelastic analysis of semirigid frames", J. Struct. Eng. ASCE, 120(7), 2156-2175. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2156)
  31. Kishi, N. and Chen, W.F. (1990), "Moment-rotation relations of semi-rigid connections with angles", J. Struct. Eng. ASCE, 116(7), 1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  32. Kishi, N., Chen, W.F. and Goto, Y. (1997), "Effective length factor of columns in semirigid and unbraced frames", J. Struct. Eng. ASCE, 123(3), 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
  33. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  34. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Method Appl. M., 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  35. Lee, K.S., Geem, Z.W., Lee, S.H. and Bae, K.W. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optimiz., 37(7), 663-684. https://doi.org/10.1080/03052150500211895
  36. Lee, S.S. and Moon, T.S. (2002), "Moment-rotation model of semi-rigid connections with angles", Eng. Struct., 24(2), 227-237. https://doi.org/10.1016/S0141-0296(01)00066-9
  37. Lui, E.M. and Chen, W.F. (1986), "Analysis and behaviour of flexibly-jointed frames", Eng. Struct., 8(2), 107-118. https://doi.org/10.1016/0141-0296(86)90026-X
  38. Monforton, G.R. and Wu, T.S. (1963), "Matrix analysis of semi-rigidly connected steel frames", J. Struct. Div. ASCE, 89(6), 13-42.
  39. Pirmoz, A., Khoei, A.S., Mohammadrezapour, E. and Daryan, A.S. (2009), "Moment-rotation behavior of bolted top-seat angle connections", J. Constr. Steel Res., 65(4), 973-984. https://doi.org/10.1016/j.jcsr.2008.08.011
  40. Prabha, P., Marimuthu, V., Jayachandran, S.A. and Seetharaman, S. (2008), "An improved polynomial model for top-and seat-angle connection", Steel Compos. Struct., 8(5), 403-421. https://doi.org/10.12989/scs.2008.8.5.403
  41. Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using Harmony search algorithm", J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
  42. Sekulovic, M. and Salatic, R. (2001), "Nonlinear analysis of frames with flexible connections", Comput. Struct., 79(11), 1097-1107. https://doi.org/10.1016/S0045-7949(01)00004-9
  43. Simoes, L.M.C. (1996), "Optimization of frames with semi-rigid connections", Comput. Struct., 60(4), 531-539. https://doi.org/10.1016/0045-7949(95)00427-0
  44. TS648 (1980), Building Code for Steel Structures, Turkish Institute of Standards, Ankara.
  45. Wang, X.W. (2008), "Nonlinear finite element analysis on the steel frame with semi-rigid connections", 7th WSEAS Int. Conf. on Applied Computer and Applied Computational Science, Hangzhou.
  46. Wu, F.S. and Chen, W.F. (1990), "A design model for semi-rigid connections", Eng. Struct., 12(2), 88-97. https://doi.org/10.1016/0141-0296(90)90013-I
  47. Xu, L. and Grierson, D.E. (1993), "Computer automated design of semi-rigid steel frameworks", J. Struct. Eng. ASCE, 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)
  48. Yee, Y.L. and Melchers, R.E. (1986), "Moment-rotation curves for bolted connections, J. Struct. Eng. ASCE, 112(3), 615-635. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(615)

피인용 문헌

  1. Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.1035
  2. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review vol.2013, 2013, https://doi.org/10.1155/2013/271031
  3. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.113
  4. Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
  5. Damage detection under ambient vibration by harmony search algorithm vol.39, pp.10, 2012, https://doi.org/10.1016/j.eswa.2012.02.147
  6. Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms 2016, https://doi.org/10.1007/s00521-016-2634-8
  7. Overview of Harmony Search algorithm and its applications in Civil Engineering vol.7, pp.1, 2014, https://doi.org/10.1007/s12065-013-0100-4
  8. A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
  9. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls vol.164, pp.1, 2015, https://doi.org/10.1007/s10957-014-0562-2
  10. An intelligent global harmony search approach to continuous optimization problems vol.232, 2014, https://doi.org/10.1016/j.amc.2014.01.086
  11. Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
  12. Optimum design of axially symmetric cylindrical reinforced concrete walls vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.361
  13. 화음탐색법과 토목 및 수자원공학 최적화문제에의 적용 vol.51, pp.4, 2018, https://doi.org/10.3741/jkwra.2018.51.4.281
  14. A novel global harmony search algorithm for solving numerical optimizations vol.25, pp.4, 2021, https://doi.org/10.1007/s00500-020-05341-5