References
- ABAQUS, Inc (2004), ABAQUS Standard User's Manual, ABAQUS Version 6.5.
- American Concrete Institute (ACI) (2005), Building Code Requirements for Structural Concrete, American concrete Institute, Detroit.
- American Institute of Steel Construction (AISC) (2005), Load and resistance factor design specification for structural steel buildings, American Institute of Steel Construction, Inc, Chicago.
- British Standards Institution (2004), Eurocode 4, "Design of Composite steel and Concrete Structures, Part 1.1: General Rules and Rules for Building", DD-ENV 1994-1-1, London.
- Choi, B.J., et al. (2008), "Compression Tests for Unstiffened Steel Plate-Concrete Structures with Variation of B/t Ratio", J. Kor. Soc. Steel Constr., 20(4), 549-559.
- Corus (2003), Bi-Steel Design & Construction Guide, 2nd Edition.
- Corus (2004), An introduction to the Corefast system, www.corusconstruction.com.
- Corus (2006), Corefast selected for new 18-storey Birmingham tower, www.bi-steel.com/news.
- Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel. Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
- Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.1296/SCS2001.01.01.04
- JEAG 4618 (2005), Technical Guidelines for Seismic Design of Steel Plate Concrete Structures: for Buildings and Structures.
- Kanchi, M., et al. (1996), "Experimental Study on A Concrete Filled Steel Structure, Part 2., Compressive Test(1)", Architectural Institute of Japan Conf., pp 1071-1072.
- Liang, Q.Q., Uy, B. and Richard Liew, J.Y. (2006), "Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects", J. Constr. Steel. Res., 62(6), 581-591. https://doi.org/10.1016/j.jcsr.2005.09.007
- Miyauchi, Y., et al. (1996), "Experimental Study on A Concrete Filled Steel Structure, Part 3 Compressive Test(2)", Architectural Institute of Japan Conf., pp 1073-1074.
- Saadeghvaziri, M.A. and Shams, M. (1997), "Nonlinear Modeling and Evaluation of Concrete-Filled Steel Tubular Columns", ABAQUS Users Conf. Proc., 6, 667-680.
- Shams, M. and Saadeghvaziri, M.A. (1999), "Nonlinear Response of Concrete-filled Steel Tubular Columns Under Axial Loading", ACI Struct. J., 96(7), 1009-1017.
- Tao, Z., Han, L.H. and Wang, D.Y. (2008), "Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete", Thin-Wall. Struct., 46(10), 1113-1128. https://doi.org/10.1016/j.tws.2008.01.007
- Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel. Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
- Uy, B. and Bradford, M.A. (1996), "Elastic local buckling of steel plates in composite steel-concrete members", Eng. Struct., 18(3), 193-200. https://doi.org/10.1016/0141-0296(95)00143-3
- Vrcelj, Z. and Uy, B. (2002), "Strength of slender concrete-filled steel box columns incorporating local buckling", J. Constr. Steel. Res., 58(2), 275-300. https://doi.org/10.1016/S0143-974X(01)00045-1
Cited by
- Strength of double skin steel-concrete composite walls vol.17, pp.2, 2017, https://doi.org/10.1007/s13296-017-6013-9
- Experimental evaluation of bending-moment performance about steel plate-concrete structures with mechanical splice vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.007
- Effect of shear connectors on local buckling and composite action in steel concrete composite walls vol.269, 2014, https://doi.org/10.1016/j.nucengdes.2013.08.035
- Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments vol.269, 2014, https://doi.org/10.1016/j.nucengdes.2013.09.019
- Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures vol.14, pp.5, 2013, https://doi.org/10.12989/scs.2013.14.5.473
- Strength and behavior of steel plate–concrete wall structures using ordinary and eco-oriented cement concrete under axial compression vol.84, 2014, https://doi.org/10.1016/j.tws.2014.07.008
- Shear strength of connections between open and closed steel-concrete composite sandwich structures vol.11, pp.2, 2011, https://doi.org/10.12989/scs.2011.11.2.169
- Determination of Slenderness Ratio of Faceplates in Steel-Plate Composite Wall Panels vol.23, pp.2, 2019, https://doi.org/10.1007/s12205-018-0144-1
- Height-thickness ratio on axial behavior of composite wall with truss connector vol.30, pp.4, 2009, https://doi.org/10.12989/scs.2019.30.4.315
- PERFORMANCE STUDY OF SC WALL BASED ON EXPERIMENT AND PARAMETRIC ANALYSIS vol.26, pp.3, 2020, https://doi.org/10.3846/jcem.2020.12181
- Compressive behavior of rectangular sandwich composite wall with different truss spacings vol.34, pp.6, 2009, https://doi.org/10.12989/scs.2020.34.6.783
- Structural behavior of sandwich composite wall with truss connectors under compression vol.35, pp.2, 2009, https://doi.org/10.12989/scs.2020.35.2.159
- Effect of height-to-width ratio on composite wall under compression vol.36, pp.5, 2009, https://doi.org/10.12989/scs.2020.36.5.507