References
- Abramovich, H., Eisenberger, M. and Shulepov, O. (1996), "Vibrations and buckling of cross-ply nonsymmetric laminated composite beams", AIAA J., 34, 1064-1069. https://doi.org/10.2514/3.13188
- Abramovich, H., Eisenberger, M. and Shulepov, O. (1995), "Vibrations of multi-span non-symmetric composite beams", Compos. Eng., 5, 397-404. https://doi.org/10.1016/0961-9526(94)00105-I
- Armanios, E.A. and Badir, A.M. (1995), "Free vibration analysis of anisotropic thin-walled closed-section beams", AIAA J., 33, 1905-1910. https://doi.org/10.2514/3.12744
- Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Comps. Struct., 3, 439-450. https://doi.org/10.12989/scs.2003.3.6.439
- Banerjee, J.R. (1998), "Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method", Comput. Struct., 69, 197-208. https://doi.org/10.1016/S0045-7949(98)00114-X
- Banerjee, J.R. and Williams, F.W. (1996), "Exact dynamic stiffness matrix for composite Timosheko beams with applications", J. Sound Vib., 194, 573-585. https://doi.org/10.1006/jsvi.1996.0378
- Banerjee, J.R. and Williams, F.W. (1995), "Free vibration of composite beams-an exact method using symbolic computation", J. Aircraft, 32, 636-642. https://doi.org/10.2514/3.46767
- Bauld, N.R. and Tzeng, L. (1984), "A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections", Int. J. Solids Struct., 20, 277-297. https://doi.org/10.1016/0020-7683(84)90039-8
- Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams suing a refined shear flexible beam element", Comput. Struct., 43, 719-727. https://doi.org/10.1016/0045-7949(92)90514-Z
- Dancila, D.S. and Armanios, E.A. (1998), "The influence of coupling on the free vibration of anisotropic thinwalled closed-section beams", Int. J. Solids Struct., 35, 3105-3119. https://doi.org/10.1016/S0020-7683(97)00365-X
- Dube, G.P. and Dumir, P.C. (1996), "Tapered thin open section beams on elastic foundation II: vibration analysis", Comput. Struct., 61, 859-869. https://doi.org/10.1016/0045-7949(96)00113-7
- Eisenberger, M. (2003a), "Dynamic stiffness vibration analysis using a higher-order beam model", Int. J. Numer. Meth. Eng., 57, 1603-1614. https://doi.org/10.1002/nme.736
- Eisenberger, M. (2003b), "An exact high order beam element", Comput. Struct., 81, 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8
- Eisenberger, M. (1997), "Torsional vibrations of open and variable cross-section bars", Thin-Wall. Struct., 28, 269-278. https://doi.org/10.1016/S0263-8231(97)00046-3
- Eisenberger, M. (1995), "Nonuniform torsional analysis of variable and open cross-section bars", Thin-Wall. Struct., 21, 93-105.
- Eisenberger, M. (1994), "Vibration frequencies for beams on variable one- and two-parameter elastic foundation", J. Sound Vib., 176, 577-584. https://doi.org/10.1006/jsvi.1994.1399
- Eisenberger, M. (1990), "Exact static and dynamic stiffness matrices for general variable cross section members", AIAA J., 28, 1105-1109. https://doi.org/10.2514/3.25173
- Eisenberger, M. and Abramovich, H. (1997), "Shape control of non-symmetric piezolaminated composite beams", Compos. Struct., 38, 565-571. https://doi.org/10.1016/S0263-8223(97)00092-5
- Eisenberger, M., Abramovich, H. and Shulepov, O. (1995), "Dynamic stiffness analysis of laminated beams using a first order shear deformation theory", Compos. Struct., 31, 265-271. https://doi.org/10.1016/0263-8223(95)00091-7
- Gjelsvik, A. (1981), The theory of thin-walled bars, Wiley, New York.
- Jones, R.M. (1975), Mechanics of composite material, McGraw-Hell, New York.
- Kisa, M. and Gurel, M.A. (2005), "Modal analysis of cracked cantilever composite beams", Struct. Eng. Mech., 20, 143-160. https://doi.org/10.12989/sem.2005.20.2.143
- La, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27, 199-222. https://doi.org/10.12989/sem.2007.27.2.199
- Lee, J. and Kim, S.E. (2002), "Flexural-torsional coupled vibration of thin-walled composite beams with channel sections", Comput. Struct., 80, 133-144. https://doi.org/10.1016/S0045-7949(01)00171-7
- Lee, J. and Kim, S.E. (2000), "Free vibration of thin-walled composite beams with I-shaped cross -sections", Compos. Struct., 55, 205-215.
- Marur, S.R. and Kant, T. (1996), "Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling", J. Sound Vib., 194, 337-351. https://doi.org/10.1006/jsvi.1996.0362
- Matsunaga, H. (2001), "Vibration and buckling of multilayered composite beams according to higher order deformation theory", J. Sound Vib., 246, 47-62. https://doi.org/10.1006/jsvi.2000.3627
- Qin, Z. and Librescu, L. (2002), "On a shear-deformable theory of anisotropic thin-walled beams: further contribution and validations", Compos. Struct., 56, 345-358. https://doi.org/10.1016/S0263-8223(02)00019-3
- Roberts, T.M. (1987), "Natural frequencies of thin-walled bars of open cross section", J. Struct. Eng., 113, 1584-1593.
- Shi, G. and Lam, K.Y. (1999), "Finite element vibration analysis of composite beams based on higher-order beam theory", J. Sound Vib., 219, 707-721. https://doi.org/10.1006/jsvi.1998.1903
- Shin, D.K., Kim, N.I. and Kim, M.Y. (2007), "Exact stiffness matrix of mono-symmetric composite I-beam with arbitrary lamination", Compos. Struct., 79, 467-480. https://doi.org/10.1016/j.compstruct.2006.02.005
- Smith, E.C. and Chopra, I. (1991), "Formulation and evaluation of an analytical model for composite boxbeams", J. Am. Helicopter Soc., 36, 23-35. https://doi.org/10.4050/JAHS.36.23
- Song, O. and Librescu, L. (1997), "Anisotropy and structural coupling on vibration and instability of spinning thin- walled beams", J. Sound Vib., 204, 477-494. https://doi.org/10.1006/jsvi.1996.0947
- Song, O. and Librescu, L. (1993), "Free vibration of anisotropic composite thin-walled beams of closed crosssection contour", J. Sound Vib., 161, 129-147.
- Song, S.J. and Waas, A.M. (1997), "Effects of shear deformation on buckling and free vibration of laminated composite beams", Compos. Struct., 37, 33-43. https://doi.org/10.1016/S0263-8223(97)00067-6
- Vallabhan, C.V.G. and Das, Y.C. (1991), "Modified Vlasov model for beams on elastic foundations", J. Geotech. Eng., 117, 956-966. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
- Vo, T.P. and Lee, J. (2008), "Free vibration of thin-walled composite box beams", Compos. Struct., 84, 11-20. https://doi.org/10.1016/j.compstruct.2007.06.001
- Walker, M. (2007), "A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for", Steel Comps. Struct., 7(3), 253-262. https://doi.org/10.12989/scs.2007.7.3.253
- Wendroff, B. (1966), Theoretical numerical analysis, Academic Press, New York.
- Wolfram S. (1991), Mathematica, a system for doing mathematics by computer, 2nd ed., Addison-Wesley Publishing Company.
- Wu, X.X. and Sun, C.T. (1990), "Vibration analysis of laminated composite thin-walled beams using finite elements", AIAA J., 29, 736-742. https://doi.org/10.2514/3.10648
- Yildirim, V. and Kiral, E. (2000), "Investigation of the rotary inertia and shear deformation effects on the out-ofplane bending and torsional natural frequencies of laminated beams", Compos. Struct., 49, 313-320. https://doi.org/10.1016/S0263-8223(00)00063-5
- Yildirim, V., Sancaktar, E. and Kiral, E. (1999), "Free vibration analysis of symmetric cross-ply laminated composite beams with the help of the transfer matrix approach", Commun. Numer. Meth. En., 15, 651-660. https://doi.org/10.1002/(SICI)1099-0887(199909)15:9<651::AID-CNM279>3.0.CO;2-Y
Cited by
- Dynamic analysis and model test on steel-concrete composite beams under moving loads vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.565
- Nonlinear bending of box section beams of finite length under uniformly distributed loading vol.17, pp.2, 2017, https://doi.org/10.1007/s13296-017-6009-5
- Semi-analytical solution of horizontally composite curved I-beam with partial slip vol.27, pp.1, 2009, https://doi.org/10.12989/scs.2018.27.1.001
- Distortional effect on global buckling and post-buckling behaviour of steel box beams vol.35, pp.6, 2020, https://doi.org/10.12989/scs.2020.35.6.717