DOI QR코드

DOI QR Code

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il (Department of Civil and Environmental Engineering, Myongji University)
  • Received : 2009.01.19
  • Accepted : 2009.09.16
  • Published : 2009.09.25

Abstract

For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

Keywords

References

  1. Abramovich, H., Eisenberger, M. and Shulepov, O. (1996), "Vibrations and buckling of cross-ply nonsymmetric laminated composite beams", AIAA J., 34, 1064-1069. https://doi.org/10.2514/3.13188
  2. Abramovich, H., Eisenberger, M. and Shulepov, O. (1995), "Vibrations of multi-span non-symmetric composite beams", Compos. Eng., 5, 397-404. https://doi.org/10.1016/0961-9526(94)00105-I
  3. Armanios, E.A. and Badir, A.M. (1995), "Free vibration analysis of anisotropic thin-walled closed-section beams", AIAA J., 33, 1905-1910. https://doi.org/10.2514/3.12744
  4. Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Comps. Struct., 3, 439-450. https://doi.org/10.12989/scs.2003.3.6.439
  5. Banerjee, J.R. (1998), "Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method", Comput. Struct., 69, 197-208. https://doi.org/10.1016/S0045-7949(98)00114-X
  6. Banerjee, J.R. and Williams, F.W. (1996), "Exact dynamic stiffness matrix for composite Timosheko beams with applications", J. Sound Vib., 194, 573-585. https://doi.org/10.1006/jsvi.1996.0378
  7. Banerjee, J.R. and Williams, F.W. (1995), "Free vibration of composite beams-an exact method using symbolic computation", J. Aircraft, 32, 636-642. https://doi.org/10.2514/3.46767
  8. Bauld, N.R. and Tzeng, L. (1984), "A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections", Int. J. Solids Struct., 20, 277-297. https://doi.org/10.1016/0020-7683(84)90039-8
  9. Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams suing a refined shear flexible beam element", Comput. Struct., 43, 719-727. https://doi.org/10.1016/0045-7949(92)90514-Z
  10. Dancila, D.S. and Armanios, E.A. (1998), "The influence of coupling on the free vibration of anisotropic thinwalled closed-section beams", Int. J. Solids Struct., 35, 3105-3119. https://doi.org/10.1016/S0020-7683(97)00365-X
  11. Dube, G.P. and Dumir, P.C. (1996), "Tapered thin open section beams on elastic foundation II: vibration analysis", Comput. Struct., 61, 859-869. https://doi.org/10.1016/0045-7949(96)00113-7
  12. Eisenberger, M. (2003a), "Dynamic stiffness vibration analysis using a higher-order beam model", Int. J. Numer. Meth. Eng., 57, 1603-1614. https://doi.org/10.1002/nme.736
  13. Eisenberger, M. (2003b), "An exact high order beam element", Comput. Struct., 81, 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8
  14. Eisenberger, M. (1997), "Torsional vibrations of open and variable cross-section bars", Thin-Wall. Struct., 28, 269-278. https://doi.org/10.1016/S0263-8231(97)00046-3
  15. Eisenberger, M. (1995), "Nonuniform torsional analysis of variable and open cross-section bars", Thin-Wall. Struct., 21, 93-105.
  16. Eisenberger, M. (1994), "Vibration frequencies for beams on variable one- and two-parameter elastic foundation", J. Sound Vib., 176, 577-584. https://doi.org/10.1006/jsvi.1994.1399
  17. Eisenberger, M. (1990), "Exact static and dynamic stiffness matrices for general variable cross section members", AIAA J., 28, 1105-1109. https://doi.org/10.2514/3.25173
  18. Eisenberger, M. and Abramovich, H. (1997), "Shape control of non-symmetric piezolaminated composite beams", Compos. Struct., 38, 565-571. https://doi.org/10.1016/S0263-8223(97)00092-5
  19. Eisenberger, M., Abramovich, H. and Shulepov, O. (1995), "Dynamic stiffness analysis of laminated beams using a first order shear deformation theory", Compos. Struct., 31, 265-271. https://doi.org/10.1016/0263-8223(95)00091-7
  20. Gjelsvik, A. (1981), The theory of thin-walled bars, Wiley, New York.
  21. Jones, R.M. (1975), Mechanics of composite material, McGraw-Hell, New York.
  22. Kisa, M. and Gurel, M.A. (2005), "Modal analysis of cracked cantilever composite beams", Struct. Eng. Mech., 20, 143-160. https://doi.org/10.12989/sem.2005.20.2.143
  23. La, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27, 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  24. Lee, J. and Kim, S.E. (2002), "Flexural-torsional coupled vibration of thin-walled composite beams with channel sections", Comput. Struct., 80, 133-144. https://doi.org/10.1016/S0045-7949(01)00171-7
  25. Lee, J. and Kim, S.E. (2000), "Free vibration of thin-walled composite beams with I-shaped cross -sections", Compos. Struct., 55, 205-215.
  26. Marur, S.R. and Kant, T. (1996), "Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling", J. Sound Vib., 194, 337-351. https://doi.org/10.1006/jsvi.1996.0362
  27. Matsunaga, H. (2001), "Vibration and buckling of multilayered composite beams according to higher order deformation theory", J. Sound Vib., 246, 47-62. https://doi.org/10.1006/jsvi.2000.3627
  28. Qin, Z. and Librescu, L. (2002), "On a shear-deformable theory of anisotropic thin-walled beams: further contribution and validations", Compos. Struct., 56, 345-358. https://doi.org/10.1016/S0263-8223(02)00019-3
  29. Roberts, T.M. (1987), "Natural frequencies of thin-walled bars of open cross section", J. Struct. Eng., 113, 1584-1593.
  30. Shi, G. and Lam, K.Y. (1999), "Finite element vibration analysis of composite beams based on higher-order beam theory", J. Sound Vib., 219, 707-721. https://doi.org/10.1006/jsvi.1998.1903
  31. Shin, D.K., Kim, N.I. and Kim, M.Y. (2007), "Exact stiffness matrix of mono-symmetric composite I-beam with arbitrary lamination", Compos. Struct., 79, 467-480. https://doi.org/10.1016/j.compstruct.2006.02.005
  32. Smith, E.C. and Chopra, I. (1991), "Formulation and evaluation of an analytical model for composite boxbeams", J. Am. Helicopter Soc., 36, 23-35. https://doi.org/10.4050/JAHS.36.23
  33. Song, O. and Librescu, L. (1997), "Anisotropy and structural coupling on vibration and instability of spinning thin- walled beams", J. Sound Vib., 204, 477-494. https://doi.org/10.1006/jsvi.1996.0947
  34. Song, O. and Librescu, L. (1993), "Free vibration of anisotropic composite thin-walled beams of closed crosssection contour", J. Sound Vib., 161, 129-147.
  35. Song, S.J. and Waas, A.M. (1997), "Effects of shear deformation on buckling and free vibration of laminated composite beams", Compos. Struct., 37, 33-43. https://doi.org/10.1016/S0263-8223(97)00067-6
  36. Vallabhan, C.V.G. and Das, Y.C. (1991), "Modified Vlasov model for beams on elastic foundations", J. Geotech. Eng., 117, 956-966. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
  37. Vo, T.P. and Lee, J. (2008), "Free vibration of thin-walled composite box beams", Compos. Struct., 84, 11-20. https://doi.org/10.1016/j.compstruct.2007.06.001
  38. Walker, M. (2007), "A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for", Steel Comps. Struct., 7(3), 253-262. https://doi.org/10.12989/scs.2007.7.3.253
  39. Wendroff, B. (1966), Theoretical numerical analysis, Academic Press, New York.
  40. Wolfram S. (1991), Mathematica, a system for doing mathematics by computer, 2nd ed., Addison-Wesley Publishing Company.
  41. Wu, X.X. and Sun, C.T. (1990), "Vibration analysis of laminated composite thin-walled beams using finite elements", AIAA J., 29, 736-742. https://doi.org/10.2514/3.10648
  42. Yildirim, V. and Kiral, E. (2000), "Investigation of the rotary inertia and shear deformation effects on the out-ofplane bending and torsional natural frequencies of laminated beams", Compos. Struct., 49, 313-320. https://doi.org/10.1016/S0263-8223(00)00063-5
  43. Yildirim, V., Sancaktar, E. and Kiral, E. (1999), "Free vibration analysis of symmetric cross-ply laminated composite beams with the help of the transfer matrix approach", Commun. Numer. Meth. En., 15, 651-660. https://doi.org/10.1002/(SICI)1099-0887(199909)15:9<651::AID-CNM279>3.0.CO;2-Y

Cited by

  1. Dynamic analysis and model test on steel-concrete composite beams under moving loads vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.565
  2. Nonlinear bending of box section beams of finite length under uniformly distributed loading vol.17, pp.2, 2017, https://doi.org/10.1007/s13296-017-6009-5
  3. Semi-analytical solution of horizontally composite curved I-beam with partial slip vol.27, pp.1, 2009, https://doi.org/10.12989/scs.2018.27.1.001
  4. Distortional effect on global buckling and post-buckling behaviour of steel box beams vol.35, pp.6, 2020, https://doi.org/10.12989/scs.2020.35.6.717