References
- Forsberg, J. and Nilsson, L. (2006), "Evaluation of response surface methodologies used in crashworthiness optimization", Int. J. Impact Eng., 32(5), 759-777. https://doi.org/10.1016/j.ijimpeng.2005.01.007
- Gupta, P. and Sinha, N.K. (1999), "An improved approach for nonlinear system identification using neural networks", J. Franklin I., 336, 721-734. https://doi.org/10.1016/S0016-0032(98)00049-0
- Haldar, A. and Mahadevan, S. (2000), Reliability assessment using stochastic finite element analysis, USA.
- Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2007), "Design optimization of regular hexagonal thinwalled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43, 555-565. https://doi.org/10.1016/j.finel.2006.12.008
- Kim, D.H. and Park, W.S. (2005), "Neural network for design and reliability analysis of rubble mound breakwaters", Ocean Eng., 32(11/12), 1332-1349. https://doi.org/10.1016/j.oceaneng.2004.11.008
- Kim, S.H. and Aboutaha, R.S. (2004), "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: experimental investigation", Steel Compos. Struct., 4(5), 333-353. https://doi.org/10.12989/scs.2004.4.5.333
- Kurtaran, H., Eskandarian, A. and Marzougui, D. (2002), "Crashworthiness design optimization using successive response surface approximations", Comput. Mech., 29(4-5), 409-421. https://doi.org/10.1007/s00466-002-0351-x
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280, 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Process. Tech., 130-131, 490-496. https://doi.org/10.1016/S0924-0136(02)00794-X
- Ljung, L. (1987), System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ.
- Myers, R.H. and Montgomery, D.C. (1995), Response Surface Methodology, Wiley, New York.
- Naghipour, M. and Mehrzadi, M. (2007), "Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP", Steel Compos. Struct., 7(6), 457-468. https://doi.org/10.12989/scs.2007.7.6.457
- Pavic, A., Miskovic, Z. and Reynolds, P. (2007), "Modal testing and finite-element model updating of a lively open-plan composite building floor", J. Struct. Eng., DOI: 10.1061(ASCE)0733-9445(2007), 133:4(550).
- Redhe, M., Forsberg, J., Jansson, T., Marklund, P.O. and Nilsson, L. (2002), "Using the response surface methodology and the D-optimality criterion in crashworthiness related problems", Struct. Multidiscip. O., 24(3), 185-194. https://doi.org/10.1007/s00158-002-0228-9
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0
- Stander, N. and Craig, K.J. (2002), "On the robustness of the successive response surface method for simulationbased optimization", Eng. Comput., 19(4), 431-450. https://doi.org/10.1108/02644400210430190
- Strand7 Online Help, Release 2.4 (2005), Suite 1, Level 5, 65 York Street, Sydney, Australia.
- Van de Ven, P.W.J., Johansen, T.A., Sorensen, A.J., Flanagana, C. and Toal, D. (2007), "Neural network augmented identification of underwater vehicle models", Control Eng. Pract., 15, 715-725. https://doi.org/10.1016/j.conengprac.2005.11.004
- Xiang, Y.J., Wang, Q., Fan, Z.J. and Fang, H.B. (2006), "Optimal crashworthiness design of a spot-welded thinwalled hat section", Finite Elem. Anal. Des., 42(10), 846-855. https://doi.org/10.1016/j.finel.2006.01.001
- Zou, Y., Tong, L. and Steven, G.P. (2000), "Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624
Cited by
- Design forces for groups of six cylindrical silos by artificial neural network modelling vol.165, pp.10, 2012, https://doi.org/10.1680/stbu.10.00049
- Structural model updating of steel box girder bridge using modal flexibility based deflections vol.7, pp.4, 2012, https://doi.org/10.3846/bjrbe.2012.34
- Explicit expression for effective moment of inertia of RC beams vol.12, pp.3, 2015, https://doi.org/10.1590/1679-78251272
- Prediction of the flexural overstrength factor for steel beams using artificial neural network vol.17, pp.3, 2014, https://doi.org/10.12989/scs.2014.17.3.215
- Rapid prediction of long-term deflections in composite frames vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.547
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- Prediction of moments in composite frames considering cracking and time effects using neural network models vol.39, pp.2, 2009, https://doi.org/10.12989/sem.2011.39.2.267
- Structural damage detection of steel bridge girder using artificial neural networks and finite element models vol.14, pp.4, 2009, https://doi.org/10.12989/scs.2013.14.4.367
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2009, https://doi.org/10.12989/cac.2016.18.6.1113
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2009, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2009, https://doi.org/10.12989/sem.2017.64.4.437
- Metamodel based multi-objective design optimization of laminated composite plates vol.67, pp.3, 2009, https://doi.org/10.12989/sem.2018.67.3.301
- Search for accurate RSM metamodels for structural engineering vol.38, pp.21, 2009, https://doi.org/10.1177/0731684419862346
- Neural networks for the rapid seismic assessment of existing moment-frame RC buildings vol.67, pp.None, 2009, https://doi.org/10.1016/j.ijdrr.2021.102677