Acknowledgement
Supported by : National Natural Science Foundation of China
References
- El-Rimawi, J. A., Burgess, I. W. and Plank, R. J. (1996), "The treatment of strain reversal in structural members during the cooling phase of a fire", Fire Safety J., 37(2), 115-135.
- European Committee for Standardization (CEN) ENV 1993-1-2 (2001), Eurocode 3 design of steel structures, part 1.2 general rules/structural fire design, London: British Standards Institution.
- Franssen, J. M. (2000), "Failure temperature of a system comprising a restrained column submitted to Fire", Fire Safety J., 34(2), 191-207. https://doi.org/10.1016/S0379-7112(99)00047-8
- Lamont, S. (2001), "The behaviour of multi-storey composite steel framed structures in response to compartment fires", PhD Thesis, University of Edinburgh.
- Neves, I.C. (1995), "The critical temperature of steel columns with restrained thermal elongation", Fire Safety J., 24(3), 211-227. https://doi.org/10.1016/0379-7112(95)00026-P
- Rodrigues, J. P. C., Neves, I. C. and Valente, J. C. (2000), "Experimental research on the critical temperature of compressed steel elements with restrained thermal elongation", Fire Safety J., 35(2), 77-98. https://doi.org/10.1016/S0379-7112(00)00018-7
- Sharples, J.R., Plank, R.J. and Nethercot, D.A.(1994), "Load-temperature-deformation behaviour of partially protected steel columns in fire", Eng. Struct., 16(8), 637-643. https://doi.org/10.1016/0141-0296(94)90049-3
- Shanley, F. R. (1947), "Inelastic column theory", Aeronaut. Sci., 14(5), 261-267. https://doi.org/10.2514/8.1346
- Simms, W. I., O'Connor, D. J., Ali, F. and Randall, M. (1995-1996), "An experimental investigation on the structural performance of steel columns subjected to elevated Temperatures", J. Fire Sci., 5(4), 269-284.
- Wang, Y. C. (2004), "Post-buckling behaviour of axially restrained and axially loaded steel columns under fire conditions", J. Struct. Eng. ASCE, 130(3), 371-380. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(371)
Cited by
- Experimental and numerical study on restrained composite slab during heating and cooling vol.69, pp.1, 2012, https://doi.org/10.1016/j.jcsr.2011.08.009
- Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures vol.10, pp.2, 2010, https://doi.org/10.12989/scs.2010.10.2.129
- Refined plastic-hinge model for analysis of steel-concrete structures exposed to fire vol.71, 2012, https://doi.org/10.1016/j.jcsr.2011.09.009
- Behaviour and design of restrained steel column in fire, Part 3: Practical design method vol.66, pp.11, 2010, https://doi.org/10.1016/j.jcsr.2010.05.009
- Finite element analysis of creep for plane steel frames in fire 2012, https://doi.org/10.1007/s11709-012-0162-x
- Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature vol.15, pp.2, 2013, https://doi.org/10.12989/scs.2013.15.2.163
- Implementation of total Lagrangian formulation for the elasto-plastic analysis of plane steel frames exposed to fire 2012, https://doi.org/10.1007/s11709-012-0163-9
- Creep of the Plane Steel Frame at Elevated Temperature vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.793
- The Effects of Geometric Nonlinearity on Elasto-Plastic Analysis of Plane Steel Frames in Fire vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.3513
- Analytical approximate solutions for large post-buckling response of a hygrothermal beam vol.43, pp.2, 2009, https://doi.org/10.12989/sem.2012.43.2.211
- Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.043