DOI QR코드

DOI QR Code

Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation

  • Civalek, Omer (Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of Mechanics) ;
  • Emsen, Engin (Akdeniz University, Faculty of Engineering Civil Engineering Department, Division of Structures)
  • 투고 : 2008.01.11
  • 심사 : 2009.01.16
  • 발행 : 2009.01.25

초록

In this study, a simple approach for bending analysis of Reissner-Mindlin plates is presented using the four-node quadrilateral domain transformation based on discrete singular convolution. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using the geometric coordinate transformation. The DSC procedures are then applied to discrete the governing equations and boundary conditions. The accuracy of the proposed method is verified by comparison with known solutions obtained by other numerical or analytical methods. Results for Reissner-Mindlin plates show a satisfactory agreement with the analytical and numerical solutions.

키워드

참고문헌

  1. Ayad, R. and Rigolot, A. (2002), "An improved four-node hybrid-mixed element based upon Mindlin's plate theory", Int. J. Number. Meth. Eng., 55, 705-731. https://doi.org/10.1002/nme.528
  2. Butalia, T.S., Kant, T. and Dixit, V.D. (1990), "Performance of heterosis element for bending of skew rhombic plates", Comput. Struct., 34(1), 23-49. https://doi.org/10.1016/0045-7949(90)90298-G
  3. Cheung, Y.K., Tham, L.G. and Li, W.Y. (1988), "Free vibration and static analysis of general plates by spline finite strip method", Comput. Mech., 3, 187-197. https://doi.org/10.1007/BF00297445
  4. Civalek, O. (2004), "Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) For Buckling Analysis of Thin Isotropic Plates and Elastic Columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  5. Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pres. Ves. Pip., 83, 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
  6. Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
  7. Civalek, O. (2007), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271. https://doi.org/10.1016/j.cam.2006.05.001
  8. Civalek, O. (2007a), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624. https://doi.org/10.1016/j.apm.2005.11.023
  9. Civalek, O. (2007b), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765. https://doi.org/10.1016/j.ijmecsci.2006.10.002
  10. Han, J.B., Liew, K.M. (1997), "An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates", Comput. Methods Appl. M., 141, 265-280. https://doi.org/10.1016/S0045-7825(96)01115-2
  11. Hou, Y., Wei, G.W. and Xiang, Y. (2005), "DSC-Ritz method for the free vibration analysis of Mindlin plates", Int. J. Number. Meth. Eng., 62, 262-288. https://doi.org/10.1002/nme.1186
  12. Kirchhoff, G. (1850), "Uber das gleichewicht und die bewegung einer elastischen scheibe", J. Reine Angew. Math., (Crelle) 40, 51.
  13. Li, W.Y., Cheung, Y.K. and Tham, L.G. (1986), "Spline finite strip analysis of general plates", J. Eng. Mech., ASCE, 112(1), 43-54. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(43)
  14. Liew, K.M. and Han, J.B. (1995), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., ASCE, 123(3), 214-221.
  15. Liew, K.M., Xiang, Y., Kitipornchai, S. and Lim, M.K. (1994), "Vibration of Mindlin plates on point supports using constraint functions", J. Eng. Mech., ASCE, 120, 499-513. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:3(499)
  16. Liew, K.M., Xiang, Y., Kitipornchai, S. (1996), "Analytical buckling solutions for Mindlin plates involving free edges", Int. J. Mech. Sci., 38(10), 1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5
  17. Liew, K.M., Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
  18. Liew, K.M. and Han, J.B. (1997), "A four–note differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates", Commun. Numer. Meth. En., 13, 73-81. https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
  19. Liu, F.L. and Liew, K.M. (1998), "Differential cubature method for static solutions of arbitrarily shaped thick plates", Int. J. Solids Struct., 35(28-29), 3655-3674. https://doi.org/10.1016/S0020-7683(97)00215-1
  20. Liu, F.L., Liew, K.M. (1999), "Free vibration analysis of Mindlin sector plates: numerical solutions by differential quadrature method", Comput. Methods Appl. M., 177, 77-92. https://doi.org/10.1016/S0045-7825(98)00376-4
  21. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., ASME, 18, 31-38.
  22. Morley, L.S.D. (1963), Skew plates and structures, The Macmillan Company, New York.
  23. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., ASME, 12, 69-77.
  24. Timoshenko, S.P. and Woinowsky Krieger, S. (1959), Theory of plates and shells, McGraw-Hill, New York.
  25. Wanji, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
  26. Wang, C.M., Kitipornchai, S., Xiang, Y. and Liew, K.M. (1993), "Stability of Skew Mindlin Plates under Isotropic In-Plane Pressure", J. Eng. Mech., ASCE, 119, 393-401. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(393)
  27. Wei, G.W. (2000), "Wavelets generated by using discrete singular convolution kernels", J. Phys. A: Math. Gen., 33, 8577-8596. https://doi.org/10.1088/0305-4470/33/47/317
  28. Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. M., 190, 2017-2030. https://doi.org/10.1016/S0045-7825(00)00219-X
  29. Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553. https://doi.org/10.1006/jsvi.2000.3507
  30. Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
  31. Wie, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports, Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946. https://doi.org/10.1002/nme.526
  32. Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055
  33. Xiang, Y. (2003), "Vibration of circular Mindlin plates with concentric elastic ring supports", Int. J. Mech. Sci., 45(3), 497-517. https://doi.org/10.1016/S0020-7403(03)00059-6
  34. Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", Int. J. Solids Struct., 41(1), 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
  35. Xiang, Y. and Zhang, L. (2005), "Free vibration analysis of stepped circular Mindlin plates", J. Sound Vib., 280(3-5) 633-655. https://doi.org/10.1016/j.jsv.2003.12.017
  36. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
  37. Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39, 1361-1383. https://doi.org/10.1016/S0020-7683(01)00241-4

피인용 문헌

  1. Hygrothermal effects on the vibration and stability of an initially stressed laminated plate vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.1041
  2. Analytical Bending Solutions of Orthotropic Rectangular Thin Plates with Two Adjacent Edges Free and the Others Clamped or Simply Supported Using Finite Integral Transform Method vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8848879
  3. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2009, https://doi.org/10.12989/sss.2020.25.4.409
  4. A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2009, https://doi.org/10.1007/s11831-019-09365-5
  5. Analytical bending solutions of thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method vol.39, pp.4, 2020, https://doi.org/10.1007/s40314-020-01310-8