References
- Ayad, R. and Rigolot, A. (2002), "An improved four-node hybrid-mixed element based upon Mindlin's plate theory", Int. J. Number. Meth. Eng., 55, 705-731. https://doi.org/10.1002/nme.528
- Butalia, T.S., Kant, T. and Dixit, V.D. (1990), "Performance of heterosis element for bending of skew rhombic plates", Comput. Struct., 34(1), 23-49. https://doi.org/10.1016/0045-7949(90)90298-G
- Cheung, Y.K., Tham, L.G. and Li, W.Y. (1988), "Free vibration and static analysis of general plates by spline finite strip method", Comput. Mech., 3, 187-197. https://doi.org/10.1007/BF00297445
- Civalek, O. (2004), "Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) For Buckling Analysis of Thin Isotropic Plates and Elastic Columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pres. Ves. Pip., 83, 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005
- Civalek, O. (2006a), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
- Civalek, O. (2007), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach", J. Comput. Appl. Math., 205, 251-271. https://doi.org/10.1016/j.cam.2006.05.001
- Civalek, O. (2007a), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, 606-624. https://doi.org/10.1016/j.apm.2005.11.023
- Civalek, O. (2007b), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49, 752-765. https://doi.org/10.1016/j.ijmecsci.2006.10.002
- Han, J.B., Liew, K.M. (1997), "An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates", Comput. Methods Appl. M., 141, 265-280. https://doi.org/10.1016/S0045-7825(96)01115-2
- Hou, Y., Wei, G.W. and Xiang, Y. (2005), "DSC-Ritz method for the free vibration analysis of Mindlin plates", Int. J. Number. Meth. Eng., 62, 262-288. https://doi.org/10.1002/nme.1186
- Kirchhoff, G. (1850), "Uber das gleichewicht und die bewegung einer elastischen scheibe", J. Reine Angew. Math., (Crelle) 40, 51.
- Li, W.Y., Cheung, Y.K. and Tham, L.G. (1986), "Spline finite strip analysis of general plates", J. Eng. Mech., ASCE, 112(1), 43-54. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(43)
- Liew, K.M. and Han, J.B. (1995), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., ASCE, 123(3), 214-221.
- Liew, K.M., Xiang, Y., Kitipornchai, S. and Lim, M.K. (1994), "Vibration of Mindlin plates on point supports using constraint functions", J. Eng. Mech., ASCE, 120, 499-513. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:3(499)
- Liew, K.M., Xiang, Y., Kitipornchai, S. (1996), "Analytical buckling solutions for Mindlin plates involving free edges", Int. J. Mech. Sci., 38(10), 1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5
- Liew, K.M., Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
- Liew, K.M. and Han, J.B. (1997), "A four–note differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates", Commun. Numer. Meth. En., 13, 73-81. https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73::AID-CNM32>3.0.CO;2-W
- Liu, F.L. and Liew, K.M. (1998), "Differential cubature method for static solutions of arbitrarily shaped thick plates", Int. J. Solids Struct., 35(28-29), 3655-3674. https://doi.org/10.1016/S0020-7683(97)00215-1
- Liu, F.L., Liew, K.M. (1999), "Free vibration analysis of Mindlin sector plates: numerical solutions by differential quadrature method", Comput. Methods Appl. M., 177, 77-92. https://doi.org/10.1016/S0045-7825(98)00376-4
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., ASME, 18, 31-38.
- Morley, L.S.D. (1963), Skew plates and structures, The Macmillan Company, New York.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., ASME, 12, 69-77.
- Timoshenko, S.P. and Woinowsky Krieger, S. (1959), Theory of plates and shells, McGraw-Hill, New York.
- Wanji, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Wang, C.M., Kitipornchai, S., Xiang, Y. and Liew, K.M. (1993), "Stability of Skew Mindlin Plates under Isotropic In-Plane Pressure", J. Eng. Mech., ASCE, 119, 393-401. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(393)
- Wei, G.W. (2000), "Wavelets generated by using discrete singular convolution kernels", J. Phys. A: Math. Gen., 33, 8577-8596. https://doi.org/10.1088/0305-4470/33/47/317
- Wei, G.W. (2001), "A new algorithm for solving some mechanical problems", Comput. Meth. Appl. M., 190, 2017-2030. https://doi.org/10.1016/S0045-7825(00)00219-X
- Wei, G.W. (2001a), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244, 535-553. https://doi.org/10.1006/jsvi.2000.3507
- Wei, G.W. (2001b), "Discrete singular convolution for beam analysis", Eng. Struct., 23, 1045-1053. https://doi.org/10.1016/S0141-0296(01)00016-5
- Wie, G.W., Zhao, Y.B. and Xiang, Y. (2002), "Discrete singular convolution and its application to the analysis of plates with internal supports, Part 1: Theory and algorithm", Int. J. Numer. Meth. Eng., 55, 913-946. https://doi.org/10.1002/nme.526
- Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002a), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055
- Xiang, Y. (2003), "Vibration of circular Mindlin plates with concentric elastic ring supports", Int. J. Mech. Sci., 45(3), 497-517. https://doi.org/10.1016/S0020-7403(03)00059-6
- Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", Int. J. Solids Struct., 41(1), 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
- Xiang, Y. and Zhang, L. (2005), "Free vibration analysis of stepped circular Mindlin plates", J. Sound Vib., 280(3-5) 633-655. https://doi.org/10.1016/j.jsv.2003.12.017
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), "Discrete singular convolution for the prediction of high frequency vibration of plates", Int. J. Solids Struct., 39, 65-88. https://doi.org/10.1016/S0020-7683(01)00183-4
- Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), "Plate vibration under irregular internal supports", Int. J. Solids Struct., 39, 1361-1383. https://doi.org/10.1016/S0020-7683(01)00241-4
Cited by
- Hygrothermal effects on the vibration and stability of an initially stressed laminated plate vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.1041
- Analytical Bending Solutions of Orthotropic Rectangular Thin Plates with Two Adjacent Edges Free and the Others Clamped or Simply Supported Using Finite Integral Transform Method vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8848879
- Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2009, https://doi.org/10.12989/sss.2020.25.4.409
- A Review on the Discrete Singular Convolution Algorithm and Its Applications in Structural Mechanics and Engineering vol.27, pp.5, 2009, https://doi.org/10.1007/s11831-019-09365-5
- Analytical bending solutions of thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method vol.39, pp.4, 2020, https://doi.org/10.1007/s40314-020-01310-8