참고문헌
- Taylor, G.I. and Elam, C.F. (1925), "The plastic extension and fracture of aluminum crystals", Proceedings of the Royal Society of London, London, May.
- Taylor, G.I. (1938), "Plastic strain in metals", J. Inst. Metals, 62, 307-324.
- Bishop, J.F.W. and Hill, R. (1951a), "A theory of the plastic distortion of a polycrystalline aggregate under combined stresses", Philos. Mag., 42, 414-427. https://doi.org/10.1080/14786445108561065
- Bishop, J.F.W. and Hill, R. (1951b), "A theoretical derivation of the plastic properties of a polycrystalline face-centered metal", Philos. Mag., 42, 1298-1307. https://doi.org/10.1080/14786444108561385
- Peirce, D., Asaro, R.J. and Needleman, A. (1983), "Material rate sensitivity and localized deformation in crystalline solids", Acta Metall., 31, 1951-1976. https://doi.org/10.1016/0001-6160(83)90014-7
- Mathur, K.K. and Dawson, P.R., (1989), "On modeling the development of crystallographic texture in bulk forming processes", Int. J. Plasticity, 5, 67-94. https://doi.org/10.1016/0749-6419(89)90020-X
- Acharya, A. and Beaudoin, A.J. (2000), "Grain-size effect in viscoplastic polycrystals at moderate strains", J. Mech. Phys. Solids, 48, 2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2
- Busso, E.P., Meissonnier, F.T. and O'Dowd, N.P. (1999), "Gradient-dependent deformation of two-phase single crystals", J. Mech. Phys. Solids, 48, 2333-2361.
- Asaro, R.J. and Needleman, A. (1985), "Texture development and strain hardening in rate dependent polycrystals", Acta Metall., 33, 923-953. https://doi.org/10.1016/0001-6160(85)90188-9
- Maniatty, A.M., Dawson, P.R. and Lee, Y.S. (1992), "A time integration algorithm for elastoplastic cubic crystals applied to modelling polycrystalline deformation", Int. J. Numer. Meth. Eng., 35, 1565-1588. https://doi.org/10.1002/nme.1620350803
- Chastel, Y.B. and Dawson, P.R. (1993), "An equilibrium-based model for anisotropic deformations of polycrystalline materials", Proceedings of the 10th International Conference on Textures of Materials, Clausthal, September.
- Molinari, A., Canova, G.R. and Azhi, A. (1987), "A self-consistent approach of the large deformation polycrystal viscoplasticity", Acta Metall., 35, 2983-2994. https://doi.org/10.1016/0001-6160(87)90297-5
- Bay, B., Hansen, N., Hughes, D.A. and Kuhlmann-Wilsdorf, D. (1992), "Evolution of f.c.c. deformation structures in polyslip", Acta Metall., 40, 205-219. https://doi.org/10.1016/0956-7151(92)90296-Q
- Harren, S.V. and Asaro, R.J. (1989), "Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model", J. Mech. Phys. Solids, 37, 191-232. https://doi.org/10.1016/0022-5096(89)90010-0
- Becker, R. (1991), "Analysis of texture evolution in channel die compression - I. Effects of grain interaction", Acta Metal. Mater., 39, 1211-1230. https://doi.org/10.1016/0956-7151(91)90209-J
- Bronkhorst, C.A., Kalidindi, S.R. and Anand, L. (1992), "Polycrystalline plasticity and the evolution of crystallographic texture in fcc metals", Philos. T. R. Soc. A., 341, 443-477. https://doi.org/10.1098/rsta.1992.0111
- Marin, E.B. and Dawson, P.R. (1998), "On modelling the elasto-viscoplastic response of metals using polycrystal plasticity", Comput. Meth. Appl. M., 165, 1-21. https://doi.org/10.1016/S0045-7825(98)00034-6
- Sarma, G.B., Radhakrishnan, B. and Dawson, P.R. (2002), "Mesoscale Modeling of Microstructure and Texture Evolution During Deformation Processing of Metals", Adv. Eng. Mater., 4(7), 509-514. https://doi.org/10.1002/1527-2648(20020717)4:7<509::AID-ADEM509>3.0.CO;2-8
- Beaudoin, A.J., Acharya, A., Chen, S.R., Korzekwa, D.A. and Stout, M.G. (2000), "Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals", Acta Mater., 48, 3409-3423. https://doi.org/10.1016/S1359-6454(00)00136-1
- Clayton, J.D. and McDowell, D.L. (2003), "A multiscale multiplicative decomposition for elastoplasticity of polycrystals", Int. J. Plasticity, 19(9), 1401-1444. https://doi.org/10.1016/S0749-6419(02)00109-2
- Hashin, Z. and Shtrikman, S. (1962), "On some variational principles in anisotropic and nonhomogeneous elasticity", J. Mech. Phys. Solids, 10, 335-342. https://doi.org/10.1016/0022-5096(62)90004-2
- Hill, R. (1963), Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11, 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
- Willis, J.R. (1989), "The structure of overall constitutive relations for a class of nonlinear composites", IMA J. Appl. Math., 43, 231-242. https://doi.org/10.1093/imamat/43.3.231
- Teply, J.L. and Dvorak, G.J. (1988), "Bounds on overall instantaneous properties of elastic-plastic composites", J. Mech. Phys. Solids, 36, 29-58. https://doi.org/10.1016/0022-5096(88)90019-1
- Hill, R. (1984), "On macroscopic effects of heterogeneity in elastoplastic media at finite strain", Math. Proc. Cambridge Pholos. Soc., 95, 481-494.
- Hill, R. (1985), "On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain", Math. Proc. Cambridge Philos. Soc., 98, 579-590.
- Michel, J.C., Moulinec, P. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: a computational approach", Comput. Meth. Appl. M., 172, 109-143. https://doi.org/10.1016/S0045-7825(98)00227-8
- Miehe, C., Schroder, J. and Schotte, J. (1998), "Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials", Comput. Meth. Appl. M., 171, 387-418.
- Miehe, C., Schroder, J. and Becker, M. (2002), "Computational homogenization analysis in fi-nite elasticity:material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction", Comput. Meth. Appl. M., 191, 4971-5005. https://doi.org/10.1016/S0045-7825(02)00391-2
- Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002), "Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme", Int. J. Numer. Meth. Eng., 54, 1235-1260. https://doi.org/10.1002/nme.541
- Kristensson, O., Sorensen, N.J. and Andersen, B.S. (2003), "Concurrent finite element analysis of periodic boundary value problems", Comput. Meth. Appl. M., 192, 1877-1891. https://doi.org/10.1016/S0045-7825(03)00217-2
- Sundararaghavana, V. and Zabaras, N. (2006), "Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization", Int. J. Plasticity, 22(10), 1799-1824. https://doi.org/10.1016/j.ijplas.2006.01.001
- Ranganathan, S.I. and Ostoja-Starzewski, M. (2008), "Scaling function, anisotropy and the size of RVE in elastic random polycrystals", J. Mech. Phys. Solids, 56, 2773-2791. https://doi.org/10.1016/j.jmps.2008.05.001
- Lee, E.H. (1969), "Elastic-plastic deformation at finite strains", J. Appl. Mech. ASME, 36, 1-6. https://doi.org/10.1115/1.3564580
- Hill, R. (1966), "Generalized constitutive relation for incremental deformation of metals crystals by multisplit", J. Mech. Phys. Solids, 14, 95-102. https://doi.org/10.1016/0022-5096(66)90040-8
- Lee, E.H. (1981), "Some comments on elastic-plastic analysis", Int. J. Solids Struct., 17, 859-872. https://doi.org/10.1016/0020-7683(81)90101-3
- Matous, K. and Maniatty, A.M. (2004), "Finite Element Formulation for Modeling Large Deformations in Elasto-viscoplastic Polycrystals", Int. J. Numer. Meth. Eng., 60, 2313-2333. https://doi.org/10.1002/nme.1045
- Simo, J.C., Taylor, R.L. and Pister, K.S. (1985), "Variational and projection methods for the volume constraint in finite deformation elasto-plasticity", Comput. Meth. Appl. M., 51, 177-208. https://doi.org/10.1016/0045-7825(85)90033-7
- Hughes, T.J.R. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear materials", Int. J. Numer. Meth. Eng., 15, 1413-1418. https://doi.org/10.1002/nme.1620150914
- Voce, E. (1948), "A practical strain-hardening function", Acta Metall., 51, 219-226.
- Kocks, U.F. (1976), "Laws for work-hardening and low-temperature creep", J. Eng. Mater-T ASME, 98, 76-85. https://doi.org/10.1115/1.3443340
- Moran, B., Ortiz, M. and Shih, C.F. (1990), "Formulation of implicit finite element methods for multiplicative finite deformation plasticity", Int. J. Numer. Meth. Eng., 29, 483-514. https://doi.org/10.1002/nme.1620290304
- Davis, T.A. and Duff, I.S. (1997), "An unsymmetric-pattern multifrontal method for sparse LU factorization", SIAM J. Matrix Anal. A., 18(1), 140-158. https://doi.org/10.1137/S0895479894246905
- Davis, T.A. and Duff, I.S. (1999), "A combined unifrontal/multifrontal method for unsymmetric sparse matrices", ACM T. Math. Software, 25(1), 1-19. https://doi.org/10.1145/305658.287640
- Misiolek, W.Z. (2002), Private communication.
- Rypl, D. and Bittnar, Z. (2002), "Hybrid Method for Generation of Quadrilateral Meshes", Eng. Mech., 9(1/2), 49-64.
- Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite-strain rod model. Part II: Computational aspects", Comput. Meth. Appl. M., 58, 76-116.
피인용 문헌
- Finite strain mean-field homogenization of composite materials with hyperelastic-plastic constituents vol.81, 2016, https://doi.org/10.1016/j.ijplas.2016.01.009
- A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials vol.330, 2017, https://doi.org/10.1016/j.jcp.2016.10.070
- Computational homogenization at extreme scales vol.6, 2016, https://doi.org/10.1016/j.eml.2015.12.009
- Effect of 3D grain structure representation in polycrystal simulations vol.52, pp.1, 2013, https://doi.org/10.1007/s00466-012-0802-y
- Sharp volumetric billboard based characterization and modeling of complex 3D Ni/Al high energy ball milled composites vol.108, 2017, https://doi.org/10.1016/j.mechmat.2017.02.008
- Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2009, https://doi.org/10.12989/imm.2011.4.2.139
- Influence of grain interaction on lattice strain evolution in two-phase polycrystals vol.4, pp.2, 2011, https://doi.org/10.12989/imm.2011.4.2.155
- A review of the FE2 method for composites vol.4, pp.1, 2009, https://doi.org/10.1007/s41939-020-00087-x