DOI QR코드

DOI QR Code

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel (Department of Aerospace and Mechanical Engineering, University of Notre Dame) ;
  • Maniatty, Antoinette M. (Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute)
  • Received : 2009.08.22
  • Accepted : 2009.11.26
  • Published : 2009.12.25

Abstract

In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

Keywords

References

  1. Taylor, G.I. and Elam, C.F. (1925), "The plastic extension and fracture of aluminum crystals", Proceedings of the Royal Society of London, London, May.
  2. Taylor, G.I. (1938), "Plastic strain in metals", J. Inst. Metals, 62, 307-324.
  3. Bishop, J.F.W. and Hill, R. (1951a), "A theory of the plastic distortion of a polycrystalline aggregate under combined stresses", Philos. Mag., 42, 414-427. https://doi.org/10.1080/14786445108561065
  4. Bishop, J.F.W. and Hill, R. (1951b), "A theoretical derivation of the plastic properties of a polycrystalline face-centered metal", Philos. Mag., 42, 1298-1307. https://doi.org/10.1080/14786444108561385
  5. Peirce, D., Asaro, R.J. and Needleman, A. (1983), "Material rate sensitivity and localized deformation in crystalline solids", Acta Metall., 31, 1951-1976. https://doi.org/10.1016/0001-6160(83)90014-7
  6. Mathur, K.K. and Dawson, P.R., (1989), "On modeling the development of crystallographic texture in bulk forming processes", Int. J. Plasticity, 5, 67-94. https://doi.org/10.1016/0749-6419(89)90020-X
  7. Acharya, A. and Beaudoin, A.J. (2000), "Grain-size effect in viscoplastic polycrystals at moderate strains", J. Mech. Phys. Solids, 48, 2213-2230. https://doi.org/10.1016/S0022-5096(00)00013-2
  8. Busso, E.P., Meissonnier, F.T. and O'Dowd, N.P. (1999), "Gradient-dependent deformation of two-phase single crystals", J. Mech. Phys. Solids, 48, 2333-2361.
  9. Asaro, R.J. and Needleman, A. (1985), "Texture development and strain hardening in rate dependent polycrystals", Acta Metall., 33, 923-953. https://doi.org/10.1016/0001-6160(85)90188-9
  10. Maniatty, A.M., Dawson, P.R. and Lee, Y.S. (1992), "A time integration algorithm for elastoplastic cubic crystals applied to modelling polycrystalline deformation", Int. J. Numer. Meth. Eng., 35, 1565-1588. https://doi.org/10.1002/nme.1620350803
  11. Chastel, Y.B. and Dawson, P.R. (1993), "An equilibrium-based model for anisotropic deformations of polycrystalline materials", Proceedings of the 10th International Conference on Textures of Materials, Clausthal, September.
  12. Molinari, A., Canova, G.R. and Azhi, A. (1987), "A self-consistent approach of the large deformation polycrystal viscoplasticity", Acta Metall., 35, 2983-2994. https://doi.org/10.1016/0001-6160(87)90297-5
  13. Bay, B., Hansen, N., Hughes, D.A. and Kuhlmann-Wilsdorf, D. (1992), "Evolution of f.c.c. deformation structures in polyslip", Acta Metall., 40, 205-219. https://doi.org/10.1016/0956-7151(92)90296-Q
  14. Harren, S.V. and Asaro, R.J. (1989), "Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model", J. Mech. Phys. Solids, 37, 191-232. https://doi.org/10.1016/0022-5096(89)90010-0
  15. Becker, R. (1991), "Analysis of texture evolution in channel die compression - I. Effects of grain interaction", Acta Metal. Mater., 39, 1211-1230. https://doi.org/10.1016/0956-7151(91)90209-J
  16. Bronkhorst, C.A., Kalidindi, S.R. and Anand, L. (1992), "Polycrystalline plasticity and the evolution of crystallographic texture in fcc metals", Philos. T. R. Soc. A., 341, 443-477. https://doi.org/10.1098/rsta.1992.0111
  17. Marin, E.B. and Dawson, P.R. (1998), "On modelling the elasto-viscoplastic response of metals using polycrystal plasticity", Comput. Meth. Appl. M., 165, 1-21. https://doi.org/10.1016/S0045-7825(98)00034-6
  18. Sarma, G.B., Radhakrishnan, B. and Dawson, P.R. (2002), "Mesoscale Modeling of Microstructure and Texture Evolution During Deformation Processing of Metals", Adv. Eng. Mater., 4(7), 509-514. https://doi.org/10.1002/1527-2648(20020717)4:7<509::AID-ADEM509>3.0.CO;2-8
  19. Beaudoin, A.J., Acharya, A., Chen, S.R., Korzekwa, D.A. and Stout, M.G. (2000), "Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals", Acta Mater., 48, 3409-3423. https://doi.org/10.1016/S1359-6454(00)00136-1
  20. Clayton, J.D. and McDowell, D.L. (2003), "A multiscale multiplicative decomposition for elastoplasticity of polycrystals", Int. J. Plasticity, 19(9), 1401-1444. https://doi.org/10.1016/S0749-6419(02)00109-2
  21. Hashin, Z. and Shtrikman, S. (1962), "On some variational principles in anisotropic and nonhomogeneous elasticity", J. Mech. Phys. Solids, 10, 335-342. https://doi.org/10.1016/0022-5096(62)90004-2
  22. Hill, R. (1963), Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11, 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
  23. Willis, J.R. (1989), "The structure of overall constitutive relations for a class of nonlinear composites", IMA J. Appl. Math., 43, 231-242. https://doi.org/10.1093/imamat/43.3.231
  24. Teply, J.L. and Dvorak, G.J. (1988), "Bounds on overall instantaneous properties of elastic-plastic composites", J. Mech. Phys. Solids, 36, 29-58. https://doi.org/10.1016/0022-5096(88)90019-1
  25. Hill, R. (1984), "On macroscopic effects of heterogeneity in elastoplastic media at finite strain", Math. Proc. Cambridge Pholos. Soc., 95, 481-494.
  26. Hill, R. (1985), "On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain", Math. Proc. Cambridge Philos. Soc., 98, 579-590.
  27. Michel, J.C., Moulinec, P. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: a computational approach", Comput. Meth. Appl. M., 172, 109-143. https://doi.org/10.1016/S0045-7825(98)00227-8
  28. Miehe, C., Schroder, J. and Schotte, J. (1998), "Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials", Comput. Meth. Appl. M., 171, 387-418.
  29. Miehe, C., Schroder, J. and Becker, M. (2002), "Computational homogenization analysis in fi-nite elasticity:material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction", Comput. Meth. Appl. M., 191, 4971-5005. https://doi.org/10.1016/S0045-7825(02)00391-2
  30. Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002), "Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme", Int. J. Numer. Meth. Eng., 54, 1235-1260. https://doi.org/10.1002/nme.541
  31. Kristensson, O., Sorensen, N.J. and Andersen, B.S. (2003), "Concurrent finite element analysis of periodic boundary value problems", Comput. Meth. Appl. M., 192, 1877-1891. https://doi.org/10.1016/S0045-7825(03)00217-2
  32. Sundararaghavana, V. and Zabaras, N. (2006), "Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization", Int. J. Plasticity, 22(10), 1799-1824. https://doi.org/10.1016/j.ijplas.2006.01.001
  33. Ranganathan, S.I. and Ostoja-Starzewski, M. (2008), "Scaling function, anisotropy and the size of RVE in elastic random polycrystals", J. Mech. Phys. Solids, 56, 2773-2791. https://doi.org/10.1016/j.jmps.2008.05.001
  34. Lee, E.H. (1969), "Elastic-plastic deformation at finite strains", J. Appl. Mech. ASME, 36, 1-6. https://doi.org/10.1115/1.3564580
  35. Hill, R. (1966), "Generalized constitutive relation for incremental deformation of metals crystals by multisplit", J. Mech. Phys. Solids, 14, 95-102. https://doi.org/10.1016/0022-5096(66)90040-8
  36. Lee, E.H. (1981), "Some comments on elastic-plastic analysis", Int. J. Solids Struct., 17, 859-872. https://doi.org/10.1016/0020-7683(81)90101-3
  37. Matous, K. and Maniatty, A.M. (2004), "Finite Element Formulation for Modeling Large Deformations in Elasto-viscoplastic Polycrystals", Int. J. Numer. Meth. Eng., 60, 2313-2333. https://doi.org/10.1002/nme.1045
  38. Simo, J.C., Taylor, R.L. and Pister, K.S. (1985), "Variational and projection methods for the volume constraint in finite deformation elasto-plasticity", Comput. Meth. Appl. M., 51, 177-208. https://doi.org/10.1016/0045-7825(85)90033-7
  39. Hughes, T.J.R. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear materials", Int. J. Numer. Meth. Eng., 15, 1413-1418. https://doi.org/10.1002/nme.1620150914
  40. Voce, E. (1948), "A practical strain-hardening function", Acta Metall., 51, 219-226.
  41. Kocks, U.F. (1976), "Laws for work-hardening and low-temperature creep", J. Eng. Mater-T ASME, 98, 76-85. https://doi.org/10.1115/1.3443340
  42. Moran, B., Ortiz, M. and Shih, C.F. (1990), "Formulation of implicit finite element methods for multiplicative finite deformation plasticity", Int. J. Numer. Meth. Eng., 29, 483-514. https://doi.org/10.1002/nme.1620290304
  43. Davis, T.A. and Duff, I.S. (1997), "An unsymmetric-pattern multifrontal method for sparse LU factorization", SIAM J. Matrix Anal. A., 18(1), 140-158. https://doi.org/10.1137/S0895479894246905
  44. Davis, T.A. and Duff, I.S. (1999), "A combined unifrontal/multifrontal method for unsymmetric sparse matrices", ACM T. Math. Software, 25(1), 1-19. https://doi.org/10.1145/305658.287640
  45. Misiolek, W.Z. (2002), Private communication.
  46. Rypl, D. and Bittnar, Z. (2002), "Hybrid Method for Generation of Quadrilateral Meshes", Eng. Mech., 9(1/2), 49-64.
  47. Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite-strain rod model. Part II: Computational aspects", Comput. Meth. Appl. M., 58, 76-116.

Cited by

  1. Finite strain mean-field homogenization of composite materials with hyperelastic-plastic constituents vol.81, 2016, https://doi.org/10.1016/j.ijplas.2016.01.009
  2. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials vol.330, 2017, https://doi.org/10.1016/j.jcp.2016.10.070
  3. Computational homogenization at extreme scales vol.6, 2016, https://doi.org/10.1016/j.eml.2015.12.009
  4. Effect of 3D grain structure representation in polycrystal simulations vol.52, pp.1, 2013, https://doi.org/10.1007/s00466-012-0802-y
  5. Sharp volumetric billboard based characterization and modeling of complex 3D Ni/Al high energy ball milled composites vol.108, 2017, https://doi.org/10.1016/j.mechmat.2017.02.008
  6. Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2009, https://doi.org/10.12989/imm.2011.4.2.139
  7. Influence of grain interaction on lattice strain evolution in two-phase polycrystals vol.4, pp.2, 2011, https://doi.org/10.12989/imm.2011.4.2.155
  8. A review of the FE2 method for composites vol.4, pp.1, 2009, https://doi.org/10.1007/s41939-020-00087-x