References
- Lakes, R.S. (2001), "Extreme damping in compliant composites with a negative-stiffness phase", Philos. Mag. Lett., 81(2), 95-100.
- Lakes, R.S., Lee, T., Bersie, A. and Wang, Y.C. (2001), "Extreme damping in composite materials with negative-stiffness inclusions", Nature, 410, 565-567. https://doi.org/10.1038/35069035
- Jaglinski, T., Kochmann, D., Stone, D. and Lakes, R.S. (2007), "Composite materials with viscoelastic stiffness greater than diamond", Science, 315, 620-622. https://doi.org/10.1126/science.1135837
- Lakes, R.S. (2001), "Extreme damping in composite materials with a negative stiffness phase", Phys. Rev. Lett., 86, 2897-2900. https://doi.org/10.1103/PhysRevLett.86.2897
- Wang, Y.C. and Lakes, R.S. (2001), "Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase", J. Appl. Phys., 90, 6458. https://doi.org/10.1063/1.1413947
- Lakes, R.S. and Drugan, W.J. (2002), "Dramatically stiffer elastic composite materials due to a negative stiffness phase", J. Mech. Phys. Solids, 50, 979-1009. https://doi.org/10.1016/S0022-5096(01)00116-8
- Thompson, J.M.T. (1982), "'Paradoxical' mechanics under fluid flow", Nature, 296, 135-137. https://doi.org/10.1038/296135a0
- Falk, F. (1980), "Model free energy, mechanics and thermodynamics of shape memory alloys", Acta Metall., 28, 1773-1780. https://doi.org/10.1016/0001-6160(80)90030-9
- Drugan, W.J. (2007), "Elastic composite materials having a negative stiffness phase can be stable", Phys. Rev. Lett., 98, 055502. https://doi.org/10.1103/PhysRevLett.98.055502
- Kochmann, D.M. and Drugan, W.J. (2009), "Dynamic stability analysis of an elastic composite material having a negative-stiffness phase", J. Mech. Phys. Solids, 57, 1122-1138. https://doi.org/10.1016/j.jmps.2009.03.002
- Ernst, E. (2004), "On the Existence of Positive Eigenvalues for the Isotropic Linear Elasticity System with Negative Shear Modulus", Commun. Part. Diff. Eq., 29, 1745-1753.
- Shang, X.C. and Lakes, R.S. (2007), "Stability of elastic material with negative stiffness and negative Poisson's ratio", Phys. Status Solidi. B., 244, 1008-1026. https://doi.org/10.1002/pssb.200572719
- Lakes, R.S. and Wojciechowski, K.W. (2008), "Negative compressibility, negative Poisson's ratio, and stability", Phys. Status Solidi. B., 245, 545-551. https://doi.org/10.1002/pssb.200777708
- Wang, Y.C. and Lakes, R.S. (2004), "Extreme stiffness systems due to negative stiffness elements", Am. J. Phys., 72, 40-50. https://doi.org/10.1119/1.1619140
- Wang, Y.C. (2007), "Influences of negative stiffness on a two-dimensional hexagonal lattice cell", Philos. Mag., 87, 3671-3688.
- Yoshimoto, K., Jain, T.S., Van Workum, K., Nealey, P.F. and de Pablo, J.J. (2004), "Mechanical heterogeneities in model polymer glasses at small length scales", Phys. Rev. Lett., 93, 175501. https://doi.org/10.1103/PhysRevLett.93.175501
- Yap, H.W., Lakes, R.S. and Carpick, R.W. (2007), "Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression", Nano Lett., 7, 1149-1154. https://doi.org/10.1021/nl062763b
- Yap, H.W., Lakes, R.S. and Carpick, R.W. (2008), "Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes", Phys. Rev. B., 77, 045423. https://doi.org/10.1103/PhysRevB.77.045423
- Shi, G. and Tang, L. (2008), "Weak forms of generalized governing equations in theory of elasticity", Interact. Multi. Mech., 1(3), 329-337. https://doi.org/10.12989/imm.2008.1.3.329
- Wang, Y.C., Swadener, J.G. and Lakes, R.S. (2007), "Anomalies in stiffness and damping of a 2D discrete viscoelastic system due to negative stiffness components", Thin Solid Films, 515, 3171-3178. https://doi.org/10.1016/j.tsf.2006.01.031
- Thompson, J.M.T. (1982), "'Paradoxical' mechanics under fluid flow", Nature, 296, 135-137. https://doi.org/10.1038/296135a0
- Hill, R. (1957), "On uniqueness and stability in the theory of finite elastic strain", J. Mech. Phys. Solids, 5, 229-241. https://doi.org/10.1016/0022-5096(57)90016-9
Cited by
- Anomalous effective viscoelastic, thermoelastic, dielectric, and piezoelectric properties of negative-stiffness composites and their stability vol.252, pp.7, 2015, https://doi.org/10.1002/pssb.201552058
- Stability of viscoelastic continuum with negative-stiffness inclusions in the low-frequency range 2013, https://doi.org/10.1002/pssb.201384231
- Negative stiffness of a buckled carbon nanotube in composite systems via molecular dynamics simulation vol.248, pp.1, 2011, https://doi.org/10.1002/pssb.201083976