DOI QR코드

DOI QR Code

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi (Department of Civil Engineering and Architecture, University of the Ryukyus) ;
  • Yagawa, Genki (Center for Computational Mechanics Research, Toyo University)
  • Received : 2009.08.10
  • Accepted : 2009.08.27
  • Published : 2009.09.25

Abstract

The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

Keywords

References

  1. Augarde, C.E. and Deeks, A.J. (2008), "The use of Timoshenko's exact solution for a cantilever beam in adaptive analysis", Finite. Elem. Anal. Des., 44, 595-601. https://doi.org/10.1016/j.finel.2008.01.010
  2. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  3. Fujisawa, T., Inaba, M. and Yagawa, G. (2003), "Parallel computing of high-speed compressible flows using a node-based finite-element method", Int. J. Numer. Meth. Eng., 58, 481-511. https://doi.org/10.1002/nme.788
  4. Giraud-Moreau, L., Borouchaki, H. and Cherouat, A. (2006), "A Remeshing Procedure for Numerical Simulation of Forming Processes in Three Dimensions", Proceedings of the 15th International meshing roundtable, Birmingham, September.
  5. Irwin, G.R. (1957), "Analysis of stresses and stains near the end of a crack transverse a plate", J. Appl. Mech., 24, 361-364.
  6. Kanto, Y. (2000), "Accurate Free Mesh Method by using Mixed Element", Transaction of JSCES, No. 20000036.
  7. Kasper, E.P. and Taylor, R.L. (2000a), "A mixed-enhanced strain method - Part I: Geometrically linear problems", Comput. Struct., 75(3), 237-250. https://doi.org/10.1016/S0045-7949(99)00134-0
  8. Kasper, E.P. and Taylor, R.L. (2000b), "A mixed-enhanced strain method - Part II: Geometrically nonlinear problems", Comput. Struct., 75(3), 251-260. https://doi.org/10.1016/S0045-7949(99)00135-2
  9. Kelly, D.W., De, J.P., Gago, S.R., Zienkiewicz, O.C. and Babuska, I. (1983a), "A posteriori error analysis and adaptive processes in the finite element method: Part I - error analysis", Int. J. Numer. Meth. Eng., 19, 1593-1619. https://doi.org/10.1002/nme.1620191103
  10. Kelly, D.W., De, J.P., Gago, S.R., Zienkiewicz, O.C. and Babuska, I. (1983b), "A posteriori error analysis and adaptive processes in the finite element method: Part II - error analysis", Int. J. Numer. Meth. Eng., 19, 1621-1656. https://doi.org/10.1002/nme.1620191104
  11. Liu, W.K., Li, S. and Belytschko, T. (1997), "Moving Least Square Kernel Particle Method, Part 1: Methodology and Convergence", Comput. Method. Appl. M., 143, 113-154. https://doi.org/10.1016/S0045-7825(96)01132-2
  12. Matsubara, H., Iraha, S., Tomiyama, J. and Yagawa, G. (2002), "Application of 3D free mesh method to fracture analysis of concrete", Proceedings of the 1st Asian Workshop on Meshfree Methods, Singapore, December.
  13. Matsubara, H., Iraha, S., Tomiyama, J., Yamashiro, T. and Yagawa, G. (2004), "Free mesh method using a tetrahedral element including vertex rotations", Proceed. JSCE, 766(I-68), 97-107.
  14. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Method. Appl. M., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  15. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  16. Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon, New York, NY.
  17. Simo, J.C. and Rifai, M.S. (1990), "A class of mixed assumed strain methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 29, 1595-1638. https://doi.org/10.1002/nme.1620290802
  18. Simo, J.C., Srmero, F. and Taylor, R.L. (1992), "Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 33, 1413-1449. https://doi.org/10.1002/nme.1620330705
  19. Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A non-conforming element for stress analysis", Int. J. Numer. Meth. Eng., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
  20. Tian, R. and Yagawa, G. (2005), "Generalized nodes and high-performance elements", Int. J. Numer. Meth. Eng., 64, 2039-2071. https://doi.org/10.1002/nme.1436
  21. Tian, R., Matsubara, H. and Yagawa, G. (2006a), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Method. Appl. M., 195, 4768-4782. https://doi.org/10.1016/j.cma.2005.06.030
  22. Tian, R., Matsubara, H. and Yagawa, G. (2006b), "Advanced 4-node tetrahedrons", Int. J. Numer. Meth. Eng., 68(12), 1209-1231. https://doi.org/10.1002/nme.1744
  23. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, Columbus, OH.
  24. Tsuchida, J., Fujisawa, T. and Yagawa, G. (2006), "Direct numerical simulation of aerodynamic sounds by a compressible CFD scheme with node-by-node finite elements", Comput. Method. Appl. M., 195, 1996-1910.
  25. Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York, NY.
  26. Yagawa, G. and Yamada, T. (1996), "Free Mesh Method: A New Meshless Finite Element Method", Comput. Mech., 18, 383-386. https://doi.org/10.1007/BF00376134
  27. Yagawa, G. and Furukawa, T. (2000), "Recent Developments of Free Mesh Method", Int. J. Numer. Meth. Eng., 47, 1419-1443. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8<1419::AID-NME837>3.0.CO;2-E
  28. Yagawa, G. (2004), "Node-by-Node Parallel Finite Elements: A Virtually Meshless Method", Int. J. Numer. Meth. Eng., 60, 69-102. https://doi.org/10.1002/nme.955
  29. Yagawa, G. and Miyamura, T. (2005), "Three-node Triangular Shell Element Using Mixed Formulation and Its Implementation by Free Mesh Method", Comput. Struct., 83, 2066-2076. https://doi.org/10.1016/j.compstruc.2005.03.013
  30. Yagawa, G. and Matsubara, H. (2007), "Enriched Free Mesh Method: An accuracy improvement for Node-based FEM", Comput. Plasticity, 7, 207-209. https://doi.org/10.1007/978-1-4020-6577-4_12
  31. Zhu, J.Z. (1997), "A posteriori error estimation-the relationship between different procedures", Comput. Method. Appl. M., 150, 411-422. https://doi.org/10.1016/S0045-7825(97)00076-5
  32. Zienkiewicz, O.C. and Morgan, K. (1983), Finite element and approximation, John Wiley & Sons.
  33. Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The superconvergent patch recovery and a posteriori error estimates. PART1: The recovery technique", Int. J. Numer. Meth. Eng., 33, 1331-1364. https://doi.org/10.1002/nme.1620330702
  34. Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The superconvergent patch recovery and a posteriori error estimates. PART2: Error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33, 1365-1382. https://doi.org/10.1002/nme.1620330703
  35. Zienkiewicz, O.C. and Zhu, J.Z. (1992c), "The superconvergent patch recovery (SPR) and adaptive finite element refinement", Comput. Method. Appl. M., 101, 207-224. https://doi.org/10.1016/0045-7825(92)90023-D
  36. Zienkiewicz, O.C. and Taylor, R.L. (2000), The finite element method, fifth edition, Butterworth Heinemann.

Cited by

  1. Multi-dimensional moving least squares method applied to 3D elasticity problems vol.47, 2013, https://doi.org/10.1016/j.engstruct.2012.05.010
  2. Free Mesh Method: fundamental conception, algorithms and accuracy study vol.87, pp.4, 2011, https://doi.org/10.2183/pjab.87.115
  3. Computational performance of Free Mesh Method applied to continuum mechanics problems vol.87, pp.4, 2011, https://doi.org/10.2183/pjab.87.135
  4. A CONSIDERATION ON ACCURACY OF THE APPROXIMATE DIFFERENTIATION IN THE PARTICLE METHOD AND MULTIDIMENSIONAL MOVING LEAST SQUARES METHOD WITH CONSTRAINT vol.66, pp.4, 2010, https://doi.org/10.2208/jsceja.66.723
  5. DEVELOPMENT OF DISCRETE CRACK PROPAGATION ANALYSIS METHOD FOR BRITTLE MATERIALS WITH PARTICLE STRUCTURES vol.69, pp.1, 2013, https://doi.org/10.2208/jscejge.69.31
  6. Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems vol.3, pp.2, 2009, https://doi.org/10.12989/imm.2010.3.2.123
  7. A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates vol.39, pp.4, 2009, https://doi.org/10.12989/sem.2011.39.4.579