DOI QR코드

DOI QR Code

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro (Process-oriented Computational Applied Mechanics Group, AMRI, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Nakasumi, Shogo (Process-oriented Computational Applied Mechanics Group, AMRI, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Tezuka, Akira (Process-oriented Computational Applied Mechanics Group, AMRI, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Fukushima, Manabu (High-performance Component Processing Group, AMRI, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Yoshizawa, Yu-Ichi (High-performance Component Processing Group, AMRI, National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2008.03.01
  • Accepted : 2008.08.15
  • Published : 2009.03.25

Abstract

An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

Keywords

References

  1. Belytschko, T., Moës, N., Usui, S. and Parimi, C. (2001), "Arbitrary discontinuities in finite elements", Int. J. Numer. Meth. Eng., 50, 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  2. Biot, M.A. (1956), "Theory of deformation of a porous viscoelastic anisotropic solid", J. Appl. Phys., 27, 59-467.
  3. Fukushima, M., Zhou, Y., Nakata, M. and Yoshizawa, Y. (2008), "Fabrication of porous silicon carbide with controlled submicrometer pore", Mat. Sci. Eng., B, 143, 211-214.
  4. Greskovich, C. and Lay, K.W. (1972), "Grain growth in very porous Al2O3 compacts", J. Am. Ceram. Soc., 55, 142-146. https://doi.org/10.1111/j.1151-2916.1972.tb11238.x
  5. Guest, J.K. and Prevost, J.H. (2006), "Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability", Int. J. Solids Struct., 43, 7028-7047. https://doi.org/10.1016/j.ijsolstr.2006.03.001
  6. Hardy, D. and Green, D.J. (1995), "Mechanical properties of a partially sintered alumina", J. Euro. Ceram. Soc., 15, 769-775. https://doi.org/10.1016/0955-2219(95)00045-V
  7. Hornung, U. (1997), "Homogenization and porous media", Interdisciplinary Applied Mathematics, 6, Springer.
  8. Ikeda, Y., Nagano, Y., Kawamoto, H., and Takano, N. (2004), "Image-based modeling and stress analysis by homogenization method for porous alminaceramics", J. Ceram. Soc. Japan, 112(5), 1052-1058.
  9. Isobe, T., Kameshima, Y., Nakajima, A., Okada, K. and Hotta, Y. (2007), "Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores", J. Eur. Ceram. Soc., 27, 53-59. https://doi.org/10.1016/j.jeurceramsoc.2006.02.030
  10. Johnson, A.A., Tezduyar T.E. (1999), "Advanced mesh generation and update methods for 3D flow simulations", Comput. Mech., 23, 130-143, 1999. https://doi.org/10.1007/s004660050393
  11. Krenar, S., Mottern, M.L., Yu, D., and Verweij, H. (2006), "Preparation and properties of porous a-Al2O3 membrane supports", J. Am. Ceram. Soc., 89, 1790-1794. https://doi.org/10.1111/j.1551-2916.2006.01037.x
  12. Legay, A., Chessa, J. and Belytschko, T. (2006), "An Eulerian-Lagrangian method for fluid-structure interaction based on level sets", Comput. Methods Appl. Mech. Eng., 195, 2070-2087. https://doi.org/10.1016/j.cma.2005.02.025
  13. Lin, Y.-S. and Burggraaf, A.J. (1991), "Preparation and characterization of high-temperature thermally stable alumina composite membrane", J. Am. Ceram. Soc., 74, 219-224. https://doi.org/10.1111/j.1151-2916.1991.tb07320.x
  14. Lin, P.-K. and Tsai, D.-S. (1997), "Preparation and analysis of a silicon carbide composite membrane", J. Am. Ceram. Soc., 80, 365-372.
  15. Moes, N., Dolbow, J., and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  16. Moes, N., Cloirec, M., Cartraud, P. and Remacle, J.-F. (2003), "A computational approach to handle complex microstructure geometries", Comput. Methods Appl. Mech. Eng., 192, 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
  17. Murad, M.A., Guerreiro, J.N. and Loula, A.F.D. (2001), "Micromechanical computational modeling of secondary consolidation and hereditary creep in soils", Comput. Methods Appl. Mech. Eng., 190, 1985-2016. https://doi.org/10.1016/S0045-7825(00)00218-8
  18. Nagashima, T., Omoto, Y., and Tani, S. (2003), "Stress intensity factor analysis of interface cracks using XFEM", Int. J. Numer. Meth. Eng., 56, 1151-1173, 2003. https://doi.org/10.1002/nme.604
  19. Nanjangud, S.C. and Green, D.J. (1995), "Mechanical behavior of porous glasses produced by sintering of spherical particles", J. Euro. Ceram. Soc., 15, 655-660. https://doi.org/10.1016/0955-2219(95)00022-M
  20. Sawada, T., Nakasumi, S. and Tezuka, A. (2007a), "Optimization of micro-structure in ceramic filter with twoscale X-FEM", Proceedings of the 21st Canadian Congress of Applied Mechanics (CANCAM 2007), 102-103, Toronto, Canada, June.
  21. Sawada, T., Yoshizawa, Y. and Tezuka, A. (2007b), "Extended finite element discretization technique of the solid-fluid mixture homogenization method forward two-scale optimal design of fluid permeation filters", Proceedings of the 3rd Asian-Pacific Congress on Computational Mechanics (APCOM'07) in conjunction with EPMESC XI, 1-10, Kyoto, Japan, December.
  22. Sawada, T. and Hisada, T. (2007c), "Fluid-structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method", Comput. Fluids, 36, 136-146. https://doi.org/10.1016/j.compfluid.2005.06.007
  23. Sawada, T., Tezuka, A. and Hisada, T. (2007d), "Extended finite element method for the fluid-structure interaction problems based on discontinuous interpolations on level set interfaces", Proceedings of the 3rd Asian-Pacific Congress on Computational Mechanics (APCOM'07) in conjunction with EPMESC XI, 1-10, Kyoto, Japan, December.
  24. Stein K., Tezduyar T., Benney R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech., 70, 58-63. https://doi.org/10.1115/1.1530635
  25. Suwanmethanond, V., Goo, E., Liu, P.K.T., Johnston G., Sahimi, M., and Tsotsis, T.T. (2000), "Porous silicon carbide sintered substrates for high-temperature membranes", Ind. Eng. Chem. Res., 39, 3264-3271. https://doi.org/10.1021/ie0000156
  26. Takano, N., Zako, M., Okazaki, T., Terada, K., (2002), "Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory", Compos. Sci. Tech., 62, 1347-1356. https://doi.org/10.1016/S0266-3538(02)00076-3
  27. Takano, N., Zako, M., Kubo, F., Kimura, N., (2003a), "Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling", Int. J. Solids Struct., 40, 1225-1242. https://doi.org/10.1016/S0020-7683(02)00642-X
  28. Takano, N., Kimura, K., Zako, M., and Kubo, F. (2003b), "Three-dimensional microstructural modeling and homogenization of porous alumina with needle-like pores", JSME Int. J., A, 46(3), 519-526.
  29. Terada, K., Ito, T. and Kikuchi, N. (1998), "Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method", Comput. Methods Appl. Mech. Eng., 153, 223-257. https://doi.org/10.1016/S0045-7825(97)00071-6
  30. Terada, K., Asai, M. and Yamagishi, M. (2003), "Finite cover method for linear and non-linear analyses of heterogeneous solids", Int. J. Numer. Meth. Eng., 58, 1321-1346. https://doi.org/10.1002/nme.820
  31. Terada, K. and Kurumatani, M. (2004), "Performance assessment of generalized elements in the finite cover method", Finite Elements Analysis Design, 41, 111-132. https://doi.org/10.1016/j.finel.2004.05.001
  32. Tezduyar, T.E., Mittal, S., Ray, S.E. and Shih, R. (1992), "Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements", Comput. Methods Appl. Mech. Eng., 95, 221-242. https://doi.org/10.1016/0045-7825(92)90141-6
  33. Tezduyar, T.E. (2003), "Computation of moving boundaries and interfaces and stabilization parameters", Int. J. Numer. Meth. Fluids, 43, 555-575. https://doi.org/10.1002/fld.505
  34. Wagner, G.J., Moes, N., Liu, W.K. and Belytschko, T. (2001), "The extended finite element method for rigid particles in Stokes flow", Int. J. Numer. Meth. Eng., 51, 293-313. https://doi.org/10.1002/nme.169
  35. Wagner, G.J., Ghosal, S. and Liu, W.K. (2003), "Particulate flow simulations using lubrication theory solution enrichment", Int. J. Numer. Meth. Eng., 56, 1261-1289. https://doi.org/10.1002/nme.608
  36. Wang, J.G., Leung, C.F. and Chow, Y.K. (2003), "Numerical solutions for flow in porous media", Int. J. Numer. Anal. Meth. Geomech., 27, 565-583. https://doi.org/10.1002/nag.286

Cited by

  1. LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh vol.48, pp.3, 2011, https://doi.org/10.1007/s00466-011-0600-y
  2. High-order gaussian quadrature in X-FEM with the lagrange-multiplier for fluid-structure coupling vol.64, pp.10-12, 2010, https://doi.org/10.1002/fld.2343
  3. Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction vol.5, pp.3, 2009, https://doi.org/10.12989/imm.2012.5.3.287