References
- Belytschko, T., Moës, N., Usui, S. and Parimi, C. (2001), "Arbitrary discontinuities in finite elements", Int. J. Numer. Meth. Eng., 50, 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
- Biot, M.A. (1956), "Theory of deformation of a porous viscoelastic anisotropic solid", J. Appl. Phys., 27, 59-467.
- Fukushima, M., Zhou, Y., Nakata, M. and Yoshizawa, Y. (2008), "Fabrication of porous silicon carbide with controlled submicrometer pore", Mat. Sci. Eng., B, 143, 211-214.
- Greskovich, C. and Lay, K.W. (1972), "Grain growth in very porous Al2O3 compacts", J. Am. Ceram. Soc., 55, 142-146. https://doi.org/10.1111/j.1151-2916.1972.tb11238.x
- Guest, J.K. and Prevost, J.H. (2006), "Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability", Int. J. Solids Struct., 43, 7028-7047. https://doi.org/10.1016/j.ijsolstr.2006.03.001
- Hardy, D. and Green, D.J. (1995), "Mechanical properties of a partially sintered alumina", J. Euro. Ceram. Soc., 15, 769-775. https://doi.org/10.1016/0955-2219(95)00045-V
- Hornung, U. (1997), "Homogenization and porous media", Interdisciplinary Applied Mathematics, 6, Springer.
- Ikeda, Y., Nagano, Y., Kawamoto, H., and Takano, N. (2004), "Image-based modeling and stress analysis by homogenization method for porous alminaceramics", J. Ceram. Soc. Japan, 112(5), 1052-1058.
- Isobe, T., Kameshima, Y., Nakajima, A., Okada, K. and Hotta, Y. (2007), "Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores", J. Eur. Ceram. Soc., 27, 53-59. https://doi.org/10.1016/j.jeurceramsoc.2006.02.030
- Johnson, A.A., Tezduyar T.E. (1999), "Advanced mesh generation and update methods for 3D flow simulations", Comput. Mech., 23, 130-143, 1999. https://doi.org/10.1007/s004660050393
- Krenar, S., Mottern, M.L., Yu, D., and Verweij, H. (2006), "Preparation and properties of porous a-Al2O3 membrane supports", J. Am. Ceram. Soc., 89, 1790-1794. https://doi.org/10.1111/j.1551-2916.2006.01037.x
- Legay, A., Chessa, J. and Belytschko, T. (2006), "An Eulerian-Lagrangian method for fluid-structure interaction based on level sets", Comput. Methods Appl. Mech. Eng., 195, 2070-2087. https://doi.org/10.1016/j.cma.2005.02.025
- Lin, Y.-S. and Burggraaf, A.J. (1991), "Preparation and characterization of high-temperature thermally stable alumina composite membrane", J. Am. Ceram. Soc., 74, 219-224. https://doi.org/10.1111/j.1151-2916.1991.tb07320.x
- Lin, P.-K. and Tsai, D.-S. (1997), "Preparation and analysis of a silicon carbide composite membrane", J. Am. Ceram. Soc., 80, 365-372.
- Moes, N., Dolbow, J., and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Moes, N., Cloirec, M., Cartraud, P. and Remacle, J.-F. (2003), "A computational approach to handle complex microstructure geometries", Comput. Methods Appl. Mech. Eng., 192, 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
- Murad, M.A., Guerreiro, J.N. and Loula, A.F.D. (2001), "Micromechanical computational modeling of secondary consolidation and hereditary creep in soils", Comput. Methods Appl. Mech. Eng., 190, 1985-2016. https://doi.org/10.1016/S0045-7825(00)00218-8
- Nagashima, T., Omoto, Y., and Tani, S. (2003), "Stress intensity factor analysis of interface cracks using XFEM", Int. J. Numer. Meth. Eng., 56, 1151-1173, 2003. https://doi.org/10.1002/nme.604
- Nanjangud, S.C. and Green, D.J. (1995), "Mechanical behavior of porous glasses produced by sintering of spherical particles", J. Euro. Ceram. Soc., 15, 655-660. https://doi.org/10.1016/0955-2219(95)00022-M
- Sawada, T., Nakasumi, S. and Tezuka, A. (2007a), "Optimization of micro-structure in ceramic filter with twoscale X-FEM", Proceedings of the 21st Canadian Congress of Applied Mechanics (CANCAM 2007), 102-103, Toronto, Canada, June.
- Sawada, T., Yoshizawa, Y. and Tezuka, A. (2007b), "Extended finite element discretization technique of the solid-fluid mixture homogenization method forward two-scale optimal design of fluid permeation filters", Proceedings of the 3rd Asian-Pacific Congress on Computational Mechanics (APCOM'07) in conjunction with EPMESC XI, 1-10, Kyoto, Japan, December.
- Sawada, T. and Hisada, T. (2007c), "Fluid-structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method", Comput. Fluids, 36, 136-146. https://doi.org/10.1016/j.compfluid.2005.06.007
- Sawada, T., Tezuka, A. and Hisada, T. (2007d), "Extended finite element method for the fluid-structure interaction problems based on discontinuous interpolations on level set interfaces", Proceedings of the 3rd Asian-Pacific Congress on Computational Mechanics (APCOM'07) in conjunction with EPMESC XI, 1-10, Kyoto, Japan, December.
- Stein K., Tezduyar T., Benney R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech., 70, 58-63. https://doi.org/10.1115/1.1530635
- Suwanmethanond, V., Goo, E., Liu, P.K.T., Johnston G., Sahimi, M., and Tsotsis, T.T. (2000), "Porous silicon carbide sintered substrates for high-temperature membranes", Ind. Eng. Chem. Res., 39, 3264-3271. https://doi.org/10.1021/ie0000156
- Takano, N., Zako, M., Okazaki, T., Terada, K., (2002), "Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory", Compos. Sci. Tech., 62, 1347-1356. https://doi.org/10.1016/S0266-3538(02)00076-3
- Takano, N., Zako, M., Kubo, F., Kimura, N., (2003a), "Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling", Int. J. Solids Struct., 40, 1225-1242. https://doi.org/10.1016/S0020-7683(02)00642-X
- Takano, N., Kimura, K., Zako, M., and Kubo, F. (2003b), "Three-dimensional microstructural modeling and homogenization of porous alumina with needle-like pores", JSME Int. J., A, 46(3), 519-526.
- Terada, K., Ito, T. and Kikuchi, N. (1998), "Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method", Comput. Methods Appl. Mech. Eng., 153, 223-257. https://doi.org/10.1016/S0045-7825(97)00071-6
- Terada, K., Asai, M. and Yamagishi, M. (2003), "Finite cover method for linear and non-linear analyses of heterogeneous solids", Int. J. Numer. Meth. Eng., 58, 1321-1346. https://doi.org/10.1002/nme.820
- Terada, K. and Kurumatani, M. (2004), "Performance assessment of generalized elements in the finite cover method", Finite Elements Analysis Design, 41, 111-132. https://doi.org/10.1016/j.finel.2004.05.001
- Tezduyar, T.E., Mittal, S., Ray, S.E. and Shih, R. (1992), "Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements", Comput. Methods Appl. Mech. Eng., 95, 221-242. https://doi.org/10.1016/0045-7825(92)90141-6
- Tezduyar, T.E. (2003), "Computation of moving boundaries and interfaces and stabilization parameters", Int. J. Numer. Meth. Fluids, 43, 555-575. https://doi.org/10.1002/fld.505
- Wagner, G.J., Moes, N., Liu, W.K. and Belytschko, T. (2001), "The extended finite element method for rigid particles in Stokes flow", Int. J. Numer. Meth. Eng., 51, 293-313. https://doi.org/10.1002/nme.169
- Wagner, G.J., Ghosal, S. and Liu, W.K. (2003), "Particulate flow simulations using lubrication theory solution enrichment", Int. J. Numer. Meth. Eng., 56, 1261-1289. https://doi.org/10.1002/nme.608
- Wang, J.G., Leung, C.F. and Chow, Y.K. (2003), "Numerical solutions for flow in porous media", Int. J. Numer. Anal. Meth. Geomech., 27, 565-583. https://doi.org/10.1002/nag.286
Cited by
- LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh vol.48, pp.3, 2011, https://doi.org/10.1007/s00466-011-0600-y
- High-order gaussian quadrature in X-FEM with the lagrange-multiplier for fluid-structure coupling vol.64, pp.10-12, 2010, https://doi.org/10.1002/fld.2343
- Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction vol.5, pp.3, 2009, https://doi.org/10.12989/imm.2012.5.3.287