References
- Amari, S. (1962), "A theory of deformations and stress of ferromagnetic substances by Finsler geometry", RAAG Memoirs, 3, 257-278.
- Aoyagi, Y. and Hasebe, T. (2007), "New physical interpretation of incompatibility and application to dislocation substructure evolution", Key Engineering Materials, 340-341, 217-222 https://doi.org/10.4028/www.scientific.net/KEM.340-341.217
- Aoyagi, Y., Hasebe, T., Chen, J.S. and Guan, P.C. (2007)(APCOM'07)
- Benssousan, A., Lions, J.-L. and Papanicoulau, G. (1978), Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam-New York-Oxford.
-
Chen, Z.Z., Kioussis, N., Ghoniem, N. and Hasebe, T. (2008), "Lubricant effect of copper nano-clusters on dislocation core in
${\alpha}$ -Fe", Physical Review B., 77-1, 014103 - Epstein, M. and Elzanowski, M. (2007), Material Inhomogeneities and their Evolution, Springer.
- Hasebe, T., Kumai, S. and Imaida, Y. (1999), "Impact behavior of FCC metals with pre-torsion strains", Mater. Process. Technol., 85, 184-187. https://doi.org/10.1016/S0924-0136(98)00288-X
- Hasebe, T. (2004a): "Continuum description of inhomogeneously deforming polycrystalline aggregate based on field theory", Mesoscopic Dynamics of Fracture Processes and Materials Strength (Proc. IUTAM Symp.), Eds. H. Kitagawa, Y. Shibutani, Kluwer, 381-390.
- Hasebe, T. (2004b), "Field theoretical multiscale polycrystal plasticity", MRS-J, 29(8), 3619-3624.
- Hasebe, T. (2006), "Multiscale crystal plasticity modeling based on field theory", CMES, 11(3), 145-155.
- Hasebe, T. (2009), "Field theory-based description of interaction field for multiple scales: Part II -Application-," Interaction Multiscale Mech., An Int. J., 2(1), 15-30. https://doi.org/10.12989/imm.2009.2.1.015
- Ikeda, S. (1975), "Prolegomena to applied geometry", Maha-shobo (in Japanese).
- Kondo, K. (1955), "Non-Riemannian geometry of imperfect crystals from a macroscopic", RRAG Memoirs, 1, D-I, 458-469.
- Terada, K. and Kikuchi, N. (2001), "A class of general algorithms for non-linear multi-scale analyses of heterogeneous media", Comput. Methods Appl. Mech. Eng., 190, 5427-5464. https://doi.org/10.1016/S0045-7825(01)00179-7
- Zbib, H.M., Hiratani, M. and Shehadeh, M. (2004), "Multiscale discrete dislocation dynamics plasticity," in Continuum Scale Simulation of Engineering Materials (eds. Raab, D., Roters, F., Barlat, F. and Chen, L.-Q.), 543-560, Wiley-VCH.
Cited by
- FTMP-BASED MODELING AND SIMULATION OF MAGNESIUM vol.02, pp.03n04, 2013, https://doi.org/10.1142/S204768411350022X
- On Finsler Geometry and Applications in Mechanics: Review and New Perspectives vol.2015, 2015, https://doi.org/10.1155/2015/828475
- FTMP-BASED SIMULATION OF TWIN NUCLEATION AND SUBSTRUCTURE EVOLUTION UNDER HYPERVELOCITY IMPACT vol.02, pp.03n04, 2013, https://doi.org/10.1142/S2047684113500218
- Modeling and Simulations of Experimentally-Observed Dislocation Substructures Based on Field Theory of Multiscale Plasticity (FTMP) Combined with TEM and EBSD-Wilkinson Method for FCC and BCC Poly/Single Crystals vol.55, pp.5, 2014, https://doi.org/10.2320/matertrans.M2013226
- Interaction fields based on incompatibility tensor in field theory of plasticity-Part II: Application- vol.2, pp.1, 2009, https://doi.org/10.12989/imm.2009.2.1.015