DOI QR코드

DOI QR Code

Alterations of breakdown and collapse pressures due to material nonlinearities

  • Nawrocki, Pawel A. (The Petroleum Institute, Department of Petroleum Engineering)
  • Received : 2008.12.02
  • Accepted : 2009.06.16
  • Published : 2009.06.25

Abstract

Breakdown pressures obtained from the classic, linear elastic breakdown model are compared with the corresponding pressures obtained using a nonlinear material model. Compression test results obtained on sandstone and siltstone are used for that purpose together with previously formulated nonlinear model which introduces elasticity functions to address nonlinear stress-strain behaviour of rocks exhibiting stress-dependent mechanical properties. Linear and nonlinear collapse pressures are also compared and it is shown that material nonlinearities have significant effect on both breakdown and collapse pressures and on tangential stresses which control breakdown pressure around a borehole. This means that the estimates of ${\sigma}_H$ made using linear models give stress values which are different than the real values in the earth. Thus the importance of a more accurate analysis, such as provided by the nonlinear models, is emphasised. It is shown, however, that the linear elastic model does not necessarily over-predict borehole stresses and the opposite case can be true, depending on rock type and test interpretation.

Keywords

References

  1. Aadnoy, B.S. and Belayneh, M. (2004), "Elasto-plastic fracturing model for wellbore stability using nonpenetrating fluids", J. Petrol Sci. Eng., 45(3-4), 179-192. https://doi.org/10.1016/j.petrol.2004.07.006
  2. Abou-Sayed, A.S., Brechtel, C.E. and Clfton, R.J. (1978), "In-situ stress determination by hydrofracturing: a fracture mechanics approach", J. Geophys. Res., 83, 2851-2862. https://doi.org/10.1029/JB083iB06p02851
  3. Bae, S.H., Kim, J.M., Kim, J.S., Park, E.S. and Jeon, S.W. (2007), "Evaluation of initial rock stress state by hydraulic fracturing test in Korea: Overall characteristics and a case study", Rock Mechanics: Proceedings of the 1st Canada-US Rock Mechanics Symposium (Ed. Eberhardt, E. et al.), Vancouver, May, 729-736.
  4. Bredehoeft, J.D., Wolff, R.G., Keyes, W.S. and Shuter, E. (1976), "Hydraulic fracturing to determine the regional in-situ stress field, Piceance Basin, Colorado", Geol. Soc. Am. Bull., 87, 250-258. https://doi.org/10.1130/0016-7606(1976)87<250:HFTDTR>2.0.CO;2
  5. Brudy, M. and Zoback, M.D. (1999), "Drilling-induced tensile wall-fractures: Implications for determination of in-situ stress orientation and magnitude", Int. J. Rock Mech. Min. Sci., 36(2), 191-215. https://doi.org/10.1016/S0148-9062(98)00182-X
  6. Chen, G.Z., Chenevert, M.E., Sharma, M.M. and Yu, M.J. (2003), "A study of wellbore stability in shales including poroelastic, chemical, and thermal effects", J. Petrol Sci. Eng., 38(3-4), 167-176. https://doi.org/10.1016/S0920-4105(03)00030-5
  7. Clark, J.B. (1949), Trans. AIME, 186, 1-3.
  8. Cui, L., Abousleiman, Y., Cheng, A.H.D. and Roegiers, J.C. (1999), "Time-dependent failure analysis of inclined boreholes in fluid-saturated formations", J. Energy Res. Techn. - Trans. of the ASME, 121(1), 31-39. https://doi.org/10.1115/1.2795057
  9. Detournay, E. and Carbonell, R. (1994), "Fracture mechanics and the breakdown process in minifrac and leak-off tests", Proceedings of EUROCK'94 Symposium, Delft, August.
  10. Fam, M.A., Dusseault, M.B. and Fooks, J.C. (2003), "Drilling in mudrocks: Rock behavior issues", J. Petrol Sci. Eng., 38(3-4), 155-166. https://doi.org/10.1016/S0920-4105(03)00029-9
  11. Guo, F., Morgenstern, N.R. and Scott, J.D. (1993a), "An experimental investigation into hydraulic fracture propagation. Part I: An experimental facilities, and Part II: Single well tests", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30(3), 177-202. https://doi.org/10.1016/0148-9062(93)92722-3
  12. Guo, F., Morgenstern, N.R. and Scott, J.D. (1993b), "Interpretation of hydraulic fracturing breakdown pressure", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30(6), 617-626. https://doi.org/10.1016/0148-9062(93)91221-4
  13. Haimson, B.C. (1968), Hydraulic fracturing in porous and non-porous rock and its potential for determining insitu stresses at great depth. Ph.D. Thesis, University of Minnesota.
  14. Haimson, B.C. and Fairhurst, C. (1969), "In-situ stress determination at great depth by means of hydraulic fracturing", Proceedings of 11th SME of AIME Rock Mechanics Symposium, Berkeley, June, 559-584.
  15. Haimson, B.C. (1978), "The hydrofracturing stress measuring method and recent field results", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, 167-178. https://doi.org/10.1016/0148-9062(78)91223-8
  16. Hefny, A. and Lo, K.Y. (1992), "The interpretation of horizontal and mixed-mode fractures in hydraulic fracturing tests of rocks", Can. Geotech. J., 29(6), 902-917. https://doi.org/10.1139/t92-102
  17. Hubbert, K.M. and Willis, D.G. (1957), "Mechanics of hydraulic fracturing", Petrol Trans. AIME, 210, 153-166.
  18. Ito, D., Sato, T.A. and Hayashi, K. (2001), "Laboratory and field verification of a new approach to stress measurements using a dilatometer tool", Int. J. Rock Mech. Min. Sci., 38(8), 1173-1184. https://doi.org/10.1016/S1365-1609(01)00073-9
  19. Ito, T., Kato, H. and Tanaka, H. (2006), "Innovative concept of hydrofracturing for deep stress measurement", Proceedings of International Symposium, In-situ Rock Stress: Measurement, Interpretation and Application, Trondheim, June, 53-60.
  20. Kim, K. and Franklin, J.A. (1987), "International Society for Rock Mechanics. Commission on Testing Methods. Suggested methods for rock stress determination", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 53-73.
  21. Kirsch, G. (1898), Z. Verein Deutscher Ing. (VDI), 42, 113.
  22. Ljunggren, C. and Amadei, B. (1989), "Estimation of virgin rock stress from horizontal hydrofractures", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26(1), 69-78.
  23. Moos, D., Peska, P., Finkbeiner, T. and Zoback, M. (2003), "Comprehensive wellbore stability analysis utilizing Quantitative Risk assessment", J. Petrol Sci. Eng., 38(3-4), 97-109. https://doi.org/10.1016/S0920-4105(03)00024-X
  24. Nawrocki, P.A. and Dusseault, M.B. (1995), "Modelling of damaged zones around openings using radiusdependent Young's modulus", Rock Mech. Rock Eng., 28(4), 227-239. https://doi.org/10.1007/BF01020228
  25. Nawrocki, P.A., Dusseault, M.B. and Bratli, R.K. (1996), "Semi-analytical models for predicting stresses around openings in non-linear geomaterials", Proceedings of EUROCK'96 Turin, A.A. Balkema (Ed. Barla, G.), Torino, September, 782-785.
  26. Nawrocki, P.A., Dusseault, M.B. and Bratli, R.K. (1998), "Use of uniaxial compression test results in modelling stresses around openings in non-linear geomaterials", J. Petrol Sci. Eng., 21(1-2), 79-94. https://doi.org/10.1016/S0920-4105(98)00045-X
  27. Raaen, A.M., Skomedal, E., Kjorholt, H., Markestad, P. and Okland, D. (2001), "Stress determination from hydraulic fracturing tests: The system stiffness approach", Int. J. Rock Mech. Min. Sci., 38(4), 529-541. https://doi.org/10.1016/S1365-1609(01)00020-X
  28. Rummel, F. (1987), Fracture mechanics approach to hydraulic fracturing stress measurements. Fracture Mechanics of Rock (Ed. Atkinson, B. K.), Academic Press, London.
  29. Rutqvist, J., Tsang, C.F. and Stephansson, O. (2000), "Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture", Int. J. Rock Mech. Min. Sci., 37(1-2), 107-120. https://doi.org/10.1016/S1365-1609(99)00097-0
  30. Santarelli, F., Brown, E.T. and Maury, V. (1986), "Analysis of borehole stresses using pressure-dependent linear elasticity", Int. J. Rock Mech. Min. Sci & Geomech. Abstr., 23, 445-449. https://doi.org/10.1016/0148-9062(86)92310-7
  31. Schmitt, D.R. and Zoback, M.D. (1989), "Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests - a proposed breakdown equation employing a modified effective stress relation for tensile failure", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26(6), 499-506. https://doi.org/10.1016/0148-9062(89)91427-7
  32. Shin, K., Sugawara, K. and Okubo, S. (2001), "Application of Weibull's theory to estimating in situ maximum stress sigma(H) by hydrofracturing", Int. J. Rock Mech. Min. Sci., 38(3), 413-420. https://doi.org/10.1016/S1365-1609(01)00009-0
  33. Tao, Q. and Ghassemi, A. (2007), "Porothermoelastic analysis of wellbore failure and determination of in situ stress and rock strength", Rock Mechanics: Proceedings of the 1st Canada-US Rock Mechanics Symposium (Ed. Eberhardt, E. et al.), Vancouver, May, 1657-1664.
  34. Wang, Y.L. and Dusseault, M.B. (2003), "A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability", J. Petrol Sci. Eng., 38(3-4), 187-198. https://doi.org/10.1016/S0920-4105(03)00032-9
  35. Yang, T.H., Tham, L.G., Tang, C.A., Liang, Z.Z. and Tsui, Y. (2004), "Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks", Rock Mech. Rock Eng., 37(4), 251-275. https://doi.org/10.1007/s00603-003-0022-z
  36. Zhang, J.C., Bai, M. and Roegiers, J.C. (2006), "On drilling directions for optimizing horizontal well stability using a dual-porosity poroelastic approach", J. Petrol Sci. Eng., 53(1-2), 61-76. https://doi.org/10.1016/j.petrol.2006.02.001

Cited by

  1. An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification vol.33, pp.2, 2009, https://doi.org/10.12989/sem.2009.33.2.239