Hydrogen Production through High Temperature Steam Electrolysis System

고온 수증기 전해 수소제조

  • Choi, Ho-Sang (Department of Display & Chemical Engineering, Kyungil Univ.)
  • 최호상 (경일대학교 디스플레이화학공학과)
  • Published : 2009.03.30

Abstract

Hydrogen energy id the 2nd clean energy able to be produced from the abundant resources, and the products of combustion or reaction do not spread an environmental pollution. Also, the hydrogen is the chemical media easily to transport and storage as energy source. The hydrogen production technology using by water splitting through electrolysis could be usable as a permanent renewable energy system without the environmental impact. The key technology of high temperature steam electrolysis is the development of an electrolyte rapidly to conduct an oxygen or proton ion decomposed from water. Subsequently, the important technology is to keep the joining technology of an electrolyte membrane and electrode materials to affect into the current efficiency.

수소에너지는 풍부한 자원으로부터 얻을 수 있는 2차 청정에너지로서 연소 및 반응 생성물이 환경을 오염시키지 않을 뿐만 아니라 에너지의 수송 및 저장이 용이한 화학적 매체이다. 물의 전기분해를 이용한 수소제조는 오염을 유발시기지 않으면서도 영구적인 재생에너지 시스템으로 이용할 수 있다. 고온 수증기전해의 핵심기술은 분해된 산소 또는 프로톤 이온이 전해질을 통해 신속하게 전달될 수 있는 전해질의 개발이 제1 핵심요건이며, 이어서 전류효율에 큰 영향을 미치는 전해질막과 전극재료의 접합기술의 확보가 중요한 핵심 요소기술이다.

Keywords

References

  1. H.-S. Choi, H.-S. Son, S.-O. Ryu, and G.-J. Hwang, 'Characteristic analysis with the preparation methods of electrolyte membrane for high tempεrature steam electrolysis (HTSE)', J Chemical Engineering '01 Japan, in press
  2. 김종원 외 9 인, '알기쉬운 수소에너지 한국에너지', 기술연구원 편저 (2005)
  3. H. Wendt, Electrochemical Hydrogen Technologies(Electro-chemical Production and Combustion of Hydrogen), 1st ed, Elsevier Science Pub. Co., New York, NY (1990)
  4. T.OHTA, 'Solar-hydrogen Energy Systems', Pergamon Press, pp. 35-58 (1979)
  5. H. S. Choi, H. S. Son, K. S. Sim, and G. J. Hwang, 'The thermal stabilization characteristics of electrolyte membrane in high temperature elecηolysis(HTE)' Trans. of the Korean Hydrogen and new Energy Society, 16, 150 (2005)
  6. 김종원 외 14 인, '수소에너지'. Capter 2, 도서출판 아진 (2004)
  7. I. Valov, B. Luerssen, E. Mutoro, I. Janek, S. Gunther, A. Barinov, P. Dudin, and L. Gregoratti, 'Electrochemically contriled reduction of molecular introgen at iridium microelectrodes on zirconia solid electrolyte', Material Science, Research Highlights, 57 (2007)
  8. T. Kobayashi, K. Abe, Y. Ukyo, and H. Matsumoto, " Study on current efficiency of steam electrolysis using a partial protonic conductor $SrZr_{O.9}Yb_{O.1}O_{3-{\alpha}}$", S'Olid State I'Onics, 138, 243 (2001) https://doi.org/10.1016/S0167-2738(00)00793-1
  9. K. Eguchi, T. Hatagishi, and H. Arai, 'Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based elec$\frac{\Pi}$olyte', S'Olid State I'Onics, 86-88, 1245 (1996) https://doi.org/10.1016/0167-2738(96)00295-0
  10. A. K. Sahu, A. Ghosh, A.K. Suri, P. Sengupta, and K. Bhanumurthy, 'Studiεs on chemical compatibility of lanthanum strontium manganite with yttria-stabilized zirconia', Materials Letters, 58, 3332 (2004) https://doi.org/10.1016/j.matlet.2004.05.076
  11. Y. Ji, J. A. Kilner, and M. F. Carolan, 'Electrical properties and oxygen diffusion in yttria-stabilized zirconia (YSZ)-$La_{O.8}Sr_{O.2}MnO_{3{\pm}{\delta}}$ (LSM) composites', S'Olid State I'Onics, 176(9-10), 937 (2005) https://doi.org/10.1016/j.ssi.2004.11.019
  12. A. Barbucci, R. Bozzo, G. Cerisola, and P. Costamagna, 'Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of PtlYSZ and LSMJYSZ electrodes', Electr'Ochimica Acta, 47, 2183 (2002) https://doi.org/10.1016/S0013-4686(02)00095-6
  13. R. Hino, K. Haga, H. Aita, and K. Sekita, 'R&D on hydrogen production by high-temperature electrolysis of steam', Nuclear Engineering and Design, 233, 363 (2004) https://doi.org/10.1016/j.nucengdes.2004.08.029