DOI QR코드

DOI QR Code

Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes

탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구

  • Published : 2009.04.01

Abstract

This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.

Keywords

References

  1. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, 'Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls', Nature, Vol. 363, p. 605, 1993 https://doi.org/10.1038/363605a0
  2. H. Dai, A. G. rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, 'Single- wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide', Chem. Phys. Lett., Vol. 260, p. 471, 1996 https://doi.org/10.1016/0009-2614(96)00862-7
  3. M. Paradise and T. Goswami, 'Carbon nanotubes - production and industrial applications', Mater. Design, Vol. 28, p. 1477, 2007 https://doi.org/10.1016/j.matdes.2006.03.008
  4. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, and M. Chapline, 'Controlled chemical routes to nanotube architectures, physics, and devices', J. Phys. Chem. B, Vol. 103, p. 11246, 1999 https://doi.org/10.1021/jp992328o
  5. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. Dai, 'Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method', Nano Lett., Vol. 4, No. 2, p. 317, 2004 https://doi.org/10.1021/nl035097c
  6. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, 'Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils', J. Am. Chem. Soc., Vol. 128, p. 13338, 2006 https://doi.org/10.1021/ja0643772
  7. H. Dai, 'Carbon nanotubes: synthesis, integration, and properties', Acc. Chem. Res. Vol. 35, p. 1035, 2002 https://doi.org/10.1021/ar0101640
  8. G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, and H. Dai, 'Selective etching of metallic carbon nanotubes by gas-phase reaction', Science, Vol. 314, p. 974, 2006 https://doi.org/10.1126/science.1133781
  9. M. Chen, C. M. Chen, S. C. Shi, and C. F. Chen, 'Low-temperature synthesis of multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using $CH_4-CO_2$ gas mixture', Jpn. J. Appl. Phys., Vol. 42, p. 614, 2003 https://doi.org/10.1143/JJAP.42.614
  10. S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, 'Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition', Appl. Phys. Lett., Vol. 83, No. 1, p. 135, 2003 https://doi.org/10.1063/1.1589187
  11. E. J. Bae, Y. S. Min, U. J. Kim, and W. Park, 'Thin film transistors of single- walled carbon nanotubes grown directly on glass substrates', Nanotechnology, Vol. 18, p. 495203, 2007 https://doi.org/10.1088/0957-4484/18/49/495203
  12. S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, 'Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates', Appl. Phys. Lett., Vol. 83, No. 22, p. 4661, 2003 https://doi.org/10.1063/1.1630167
  13. Y. S. Min, E. J. Bae, B. S. Oh, D. Kang, and W. Park, 'Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition', J. Am. Chem. Soc., Vol. 127, p. 12498, 2005 https://doi.org/10.1021/ja054108w
  14. M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang, and J. Robertson, 'Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures', Nano Lett., Vol. 6, No. 6, p. 1107, 2006 https://doi.org/10.1021/nl060068y
  15. E. J. Bae, Y. S. Min, D. Kang, J. H. Ko, and W. Park, 'Low-temperature growth of sngle-walled carbon nanotubes by plasma enhanced chemical vapor deposition', Chem. Mater., Vol. 17, p. 5141, 2005 https://doi.org/10.1021/cm050889o
  16. D. Yokoyama, T. Iwasaki, T. Yoshida, H. Kawarada, S. Sato, T. Hyakushima, M. Nihei, and Y. Awano, 'Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing', Appl. Phys. Lett., Vol. 91, p. 263101, 2007 https://doi.org/10.1063/1.2824390
  17. J. Han, W. S. Yang, J. B. Yoo, and C. Y. Park, 'Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition', J. Appl. Phys., Vol. 88, No. 12, p. 7363, 2000 https://doi.org/10.1063/1.1322378
  18. G. Eres, A. A. Kinkhabwala, H. Cui, D. B. Geohegan, A. A. Puretzky, and D. H. Lowndes, 'Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays', J. Phys. Chem. B, Vol. 109, p. 16684, 2005 https://doi.org/10.1021/jp051531i
  19. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, and R. K. Tsui, 'Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst', Nano Lett., Vol. 3, No. 6, p. 731, 2003 https://doi.org/10.1021/nl034154z
  20. C. D. Kim, J. T. Kang, H. W. Ryu, I. S. Lee, J. H. Park, C. S. Lee, E. W. Lee, and H. R. Lee, 'Wall-controlled growth of carbon nanotubes using temperature treatment', Jpn. J. Appl. Phys., Vol. 47, No. 6, p. 4803, 2008 https://doi.org/10.1143/JJAP.47.4803
  21. S. Pisana, M. Cantoro, A. Parvez, S. Hofmann, A. C. Ferrari, and J. Robertson, 'The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth', Physica E, Vol. 37, p. 1, 2007 https://doi.org/10.1016/j.physe.2006.06.014
  22. W. S. Choi, S. H. Choi, B. Hong, D. G. Lim, K. J. Yang, and J. H. Lee, 'Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by MPECVD', Mater. Sci. Eng. C, Vol. 26, p. 1211, 2006 https://doi.org/10.1016/j.msec.2005.09.037
  23. H. J. Cho, N. S. Lee, I. G. Jang, H. S. Uh, and J. P. Hong, 'Field emission from carbon nanotubes etched by a dc plasma', J. Kor. Phys. Soc., Vol. 50, No. 6, p. 1848, 2007 https://doi.org/10.3938/jkps.50.1848
  24. C. Kanai, K. Watanabe, and Takakuwa, 'Ab initio calculations on etching of graphite and diamond surfaces by atomic hydrogen', Phys. Rev. B, Vol. 63, p. 235311, 2001 https://doi.org/10.1103/PhysRevB.63.235311
  25. K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger, and G. B. Ellison, 'Bond strengths of ethylene and acetylene', J. Am. Chem. Soc., Vol. 112, p. 5750, 1990 https://doi.org/10.1021/ja00171a013
  26. Y. P. Zhang, C. H. Cheng, J. T. Kim, J. Stanojevic, and E. E. Eyler, 'Dissociation energies of molecular hydrogen and the hydrogen molecular ion', Phys. Rev. Lett., Vol. 92, No. 20, p. 203003, 2004 https://doi.org/10.1103/PhysRevLett.92.203003
  27. R. F. Wood, S. Pannala, J. C. Wells, A. A. Puretzky, and D. B. Geohegan, 'Simple of the interrelation between single- and multiwall carbon nanotube growth rates for the CVD process', Phys. Rev. B, Vol. 75, p. 235446, 2007 https://doi.org/10.1103/PhysRevB.75.235446
  28. C. P. Deck and K. Vecchio, 'Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams', Carbon, Vol. 44, p. 267, 2006 https://doi.org/10.1016/j.carbon.2005.07.023
  29. S. Honda, M. Katayama, K. Y. Lee, T. Ikuno, S. Ohkura, K. Oura, H. Furuta, and T. Hirao, 'Low temperature synthesis of aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition using pure methane', Jpn. J. Appl. Phys., Vol. 42, p. L441, 2003 https://doi.org/10.1143/JJAP.42.L441