Abstract
In a language, noun and keyword extraction is a key element in information processing. When it comes to processing Korean language information, however, there are still a lot of problems with noun and keyword extraction. This paper proposes an effective noun extraction method that considers noun emergence features. The proposed method can be effectively used in areas like information retrieval where large volumes of documents and data need to be processed in a fast manner. In this paper, a category-based keyword construction method is also presented that uses an unsupervised learning technique to ensure high volumes of queries are automatically classified. Our experimental results show that the proposed method outperformed both the supervised learning-based X2 method known to excel in keyword extraction and the DF method, in terms o classification precision.
언어에서 명사 및 키워드 추출은 정보처리에서 매우 필수적인 요소이다. 하지만, 한국어 정보처리에서 명사 추출과 키워드 추출은 아직도 많은 문제점을 안고 있다. 본 논문에서는 명사의 등장 특성을 고려한 효율적인 명사 추출 방법에 대해서 제시하였다. 제시한 방법은 대량의 문서를 빠르게 처리해야 하는 정보 검색과 같은 분야에서 유용하게 쓰일 수 있다. 또한 대량의 문제를 자동으로 분류하기 위하여 비감독 학습 기법에 의해 카테고리별 키워드를 구성하기 위한 방법을 제안하였다. 제안된 방법은 감독 학습 기법의 키워드 추출기법 중에서 우수하다고 알려진 X2기법과 DF 기법보다 우수한 분류 성능을 보였다.