대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성 데이비드 클레이튼* · 차민석*** · 폴 로니* ## Edge Flame propagation for Twin Premixed Counterflow Slot Burner David B. Clayton, Min Suk Cha, and Paul D. Ronney ## **ABSTRACT** Propagation rates (U_{edge}) of various premixed, twin edge-flames were measured as a function of global strain rate (σ) , mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge})$ and retreating (negative $U_{edge})$ edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of σ on U_{edge} . Both low- σ and high- σ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low $(CH_4/O_2/CO_2)$ and high (C_3H_8/air) Lewis number cases, propagation rates clearly show a strong dependence on Le. **Key Words**: edge flames, twin premixed flame, advancing, retreating, extinction limit, short-length flame. ## 기 호 설 명 d: gap spacing between burners, cm. U_{edge} : propagation speed of edge, cm/s. σ : global strain rate, 1/s. S_L : 1-D laminar flame speed, cm/s. Le: Lewis number ρ_u : gas density of unburned mixture ρ_b : gas density of burned mixture. € normalized flame thickness. κ: normalized heat loss factor ## 1. Introduction For the past decade, the transition from burning to non-burning states, such as a hole created in a turbulent field, has been studied via the use of a simplified model known as an edge-flame. Edge- flames are idealized two-dimensional representations of more complex combustion phenomena that provide the insights and universal character necessary to understand flames with edges[1]. In order to better understand turbulent flow field phenomena. many situations arise in combustion where edge-flames are important. As pointed out by Buckmaster[1], a flame spreading over a fuel bed, a candle flame in micro-gravity, and a lean methane/air flame ^{*} University of Southern California ^{**} Korea Institute of Machinery & Materials [†] mscha@kimm.re.kr in a tube are all cases which may exhibit a flame with an edge for which the propagation and/or extinguishment of the flame is directly related to the edge characteristics. Many theoretical studies of both premixed [2-4] and non-premixed[5-7] edge-flames have been conducted in the past. As discussed by Cha and Ronney[8], these theoretical studies show that edge-flames will typically propagate parallel to the flame sheet with positive, negative, or zero edge speeds (Uedge) depending on factors such as the global strain rate(s), heat losses, and Lewis number(Le). The theoretical models specifically indicate that U_{edge} will be positive for moderate σ and negative for high σ , while significantly higher σ , that near the extinction strain(σ_{ext}), leads to a condition where U_{edge} approaches $-\infty$. In the range between moderate σ and σ_{ext} , a continuous flame sheet is predicted which could last indefinitely unless a turbulent flow field, or some other locally high strain phenomena, were to create a hole. With the exception of the work by Cha and Ronney[8] and Clayton et al[9], there are no experimental results in the literature which confirm or refute the predicted values of Uedge, or the effect of σ on such values. This work considers twin, premixed edge-flames and the role of global strain rate, mixture strength, and Lewis number on propagation speeds. ## 2. Experiment One of the most common flow configurations in the study of edge-flames is counterflow round-iet apparatus. However, round-jets are unsuitable here due to the fact that extensional strain occurs in both coordinate directions parallel to the plane of the flame. A counterflow slot-jet, or rectangular-jet, overcomes this problem by creating extensional strain in the direction orthogonal to the slots themselves with only a very small extensional strain along the length of the slots (the long dimension), or direction of edge propagation The counterflow slot-jet burner employed (Fig. 2) for the experiments consists of two Fig. 1: Close-up view of counterflow slot-jet burner showing central jet, sheath flow jets, and ceramic burner spacers with electrically heated wire. 0.5 cm 13 cm central rectangular which results in nearly plane strain in the plane orthogonal to the edge propagation[8]. A very small flow does occur in the direction orthogonal to the jets, or in the direction of edge-flame propagation, so small ceramic spacers were placed at both ends between the upper and lower jets to help minimize any unwanted extensional strain in this direction. values of velocity, U_{iet}, employed for the upper and lower central jet On both sides of these jets, streams. additional $0.5\ cm$ $13\ cm$ slot jets provided N_2 sheath flow to suppress the shear layer between the flame jets and the ambient All six jets were filled with atmosphere. steel wool and the jet exits were fitted with stainless steel honeycomb (0.7 mm channel width) to ensure uniformity of the exit flow. The jets (and thus the gases at the jet exits) were maintained at room temperature by water cooling. Commercial mass controllers with accuracy 1 % of full scale controlled the gas flows. The sheath flow velocities, U_{sheath} , were set to match the shear-layer central jets, Ujet, to avoid instabilities between the reactive flow and sheath flows. $\begin{array}{ccccc} Advancing & edge\mbox{-flames} & (U_{edge} > 0) & are \\ produced & by & establishing & a & uniform & flame \\ \end{array}$ the counterflow slot-jets, between extinguishing or "erasing" part of the flame by sweeping a small round jet of N2 across the length of the slot, leaving only a small burning region at one end, then suddenly removing the N₂ jet. This procedure results in an edge-flame that propagates across the length of the slot, thereby reestablishing the uniform flame. The conditions for retreating edge-flames (U_{edge} < 0) are not directly accessible in a slot-jet apparatus with "bare" ends. To overcome this limitation, electrical wire resistance heaters were added to the ceramic spacers(Fig. 2) at both ends of the slots which act as anchors. Retreating edge-flames can then be triggered with a jet of N₂ that extinguishes the flame in a region adjacent to the heated. Α Photron **FASTCAM** ultima 1024 high-speed camera is used to directly record edge-flame propagation or in conjunction with a Schlieren imaging system. With a framing rate as high as 500 Hz and a shutter speed as low as 0.125 ms the camera/Schlieren system is capable of capturing edge-flame propagation rates greater than 200 cm/s. In addition, Princeton Instrument ICCD camera(576×384) is used to visualize instantaneous shapes of flame edges with 2 ms exposure time. #### 3. Results and Discussion #### 3.1 Effect of Mixture Strength For premixed flames, Daou et al.[11] expressed the combined effects of strain and heat losses in terms of a dimensionless flame thickness $\varepsilon \equiv (\sigma \alpha / (2S_L^2))^{1/2}$, where α is the gas thermal diffusivity and S_L is the laminar burning velocity of a stoichiometric mixture of the fuel and oxidizer streams, and a dimensionless heat loss $\kappa = \beta(\alpha/S_L^2)\kappa_0$, where β is the non-dimensional activation energy (Zeldovich number) and κ_0 is a linear volumetric heat loss coefficient (units s⁻¹). Results are non-dimensionalized accordingly to compare with previous computational predictions. Edge flame propagation speeds, U_{edge} , for CH_4 /air mixtures are plotted in Fig. 3 as a Fig. 2: Effect of dimensional strain rate (σ) on dimensional edge speed (U_{edge}) for various CH₄/air mixtures. function of global strain rate, σ (= $2U_{iet}/d$), indicating both low- σ and high- σ extinction limits. As with non-premixed edge-flames[8], U_{edge} is lower for weaker mixtures for all values of σ . Strong mixtures, thus smaller κ and smaller impact of heat loss, exhibit short-length flames near the low- σ limit whereas weaker mixtures exhibit retreating edge-flames. Short-length flames are single or multiple flames on the order of 1 cm in length, with both a leading edge and trailing tail, advancing from one side of the burner to the other. The three strongest mixtures exhibit advancing short-length flames at a limit near σ \approx 12 ± 1 s Short-length flames are only observed near the low-s extinction limit. For all conditions where the high- σ limit was reached, retreating edge-flames were observed. The high- σ extinction limit varies considerably for each mixture, but was not reached for the two strongest mixtures, 6.5 % and 6 % CH₄, due to burner flow limitations. To give a phenomenological understanding, instantaneous images of propagating flames are taken by the ICCD camera and shown in Fig. 3. 5.8 % methane case is selected since the all of short-length flame, advancing, and retreating edge- flames can be observed with this mixture. Note that a flame propagation direction is left to right for all individual photos. Figure 3a shows the short-length flame near the low- σ extinction limit. Its shape is similar to a parachute showing enclosed flame front. Advancing edge shows Fig. 3: Instantaneous images of flame edges for CH₄/air mixture with 5.8 % of CH4; (a) a short-length flame for very low σ , (b)-(d) advancing edges, and (e) retreating edge near high- σ extinction limit. high intensity flame luminosity while retreating edge demonstrate dimmed feature. As s increases, two distinctive twin flame fronts are closer and closer, and positively propagating edge can be observed (Fig. 3(b)-(d)) showing highest intensity of flames at the advancing edges. However, as shown in Fig. 3(e), retreating edge has a dimmed flame front just like non-premixed cases[8]. Figure 5 shows the same information as Fig. 3 in non-dimensional form. Uedge is scaled by $S_L(\rho_u/\rho_b)$ and is plotted against the dimensionless flame thickness, ε , proposed by Daou et al.[11]. It can be argued that the scaling factor of $S_L(\rho_u/\rho_b)$ may not be the most accurate option for twin premixed flames but results in scaled propagation speeds on the order of 1, similar to results of nonpremixed edge-flames[8], and may prove acceptable for these preliminary discussions. To summarize the effect of mixture strength, a map of flame behavior in κ - ε space is shown in Fig. 6 along with the corresponding predictions by Daou et al.[11] in Fig. 7. Similarities between the two plots include (1) the strain- induced extinction limit 0.35, occurs near 3 heat-loss-induced limit occurs along a limit line with roughly $\varepsilon \approx 1.5\kappa$, and (3) the ultimate extinction limit, where strain and heat loss limits converge, is near $\kappa = 0.25$ which is approximately ten times larger than single premixed flames indicating that twin flames are much stronger due to the Fig. 4: Scaled Uedge vs. non-dimensional flame thickness ϵ for various CH₄/air mixtures. Fig. 5: Experimental map of propagation mode and extinction limits of edge-flames with heat loss factor κ and non-dimensional flame thickness ε for CH₄/air mixtures. Fig. 6: Theoretically predicted map of propagation mode and extinction limits of edge-flames with heat loss factor κ and non-dimensional flame thickness ε [11]. Fig. 7: Scaled Uedge vs. for C_3H_8/air mixtures (Le > 1) compared to CH_4/air (Le \approx 1) back-to-back configuration. #### 3.2 Effect of Lewis Number The effects of the non-dimensional flame thickness ε on the scaled edge-flame propagation speed for fuel Le larger than unity are shown in Fig. 8. Data for a CH₄/air mixture (Le \approx 1) with a lower S_L than the weakest C₃H₈/air mixture tested are also shown for comparison purposes. Ideally, values for S_L would be similar for both mixture sets but weaker C_3H_8 /air mixtures, thus lower S_L , did not exist for the current burner and stronger CH_4 /air mixtures, thus higher S_L , did not extend to the high- ε limit due to burner limitations. For matched laminar burning velocities, the low- ε limits for both mixtures would likely be similar. Figure 8 shows that the values of U_{edge} are much lower for the Le > 1 cases even at higher S_L (thus lower heat loss parameter κ) and same ε . It should be noted that none of the C₃H₈/air mixtures tested exhibit "short-length" flames or retreating edge-flames. Additionally, the Peclet number (Pe = $U_{jet} \cdot d/\alpha$) based on U_{jet} and d is approximately equal for each fuel which is accomplished by varying the burner gap. Edge-flame propagation speeds for Le < 1 mixtures are shown in Fig. 9. By using CH₄/O₂/CO₂ mixtures, the fuel and oxygen Lewis numbers are nearly equal and both are less than unity. Figure 9 shows that Le < 1 mixtures have much higher scaled values of Fig. 8: Scaled U_{edge} vs. for $CH_4/O_2/CO2$ mixtures (Le < 1) compared to CH_4/air (Le \approx 1) U_{edge} than Le ≈ 1 mixtures having similar S_L (thus κ). The high- σ extinction limit occurs at ε = 0.66±0.02 for the mixtures shown in Fig. 9, which is higher than that for Le \approx 1 mixtures (Fig. 5) or Le > 1 (Fig. 8), but for each mixture family having nearly the same Le, the extinction limits are nearly independent of S_L (thus κ). ## 4. Conclusions Propagation rates of twin, premixed edgein a slot-jet counterflow flames measured as a function of strain rate for varying mixture strength and Lewis number. "Short-length" flames having concurrent propagating head and retreating tail were observed near the low-strain extinction limit for strong mixtures, while weaker mixtures exhibited retreating edges. High-strain conditions near extinction resulted retreating edges for all Le ≤ 1 conditions in which the high-strain limit was reached. In addition, flame behavior as depicted in k-e space for CH₄/air mixtures compares favorably with predictions by Daou et al.[3]. $U_{\rm edge}$ is well scaled with $S_L(\rho_u/\rho_b)$, since expanded burnt gas between the two premixed flame sheets pushes the flame edge and thus scales to the first order of the density ratio. Similar to nonpremixed edge-flames, high (low) Le mixtures behave like a weaker (stronger) mixtures compared to Le \approx 1, and heat loss induced low- ε extinction limits were well correlated with heat loss factor for each tested mixture irrespective of Lewis numbers. Future experiments will consist of nonpremixed fuel-air edge-flames and edge-flames with much lower Le, such as Hydrogen. #### Acknowledgments DBC was supported by NASA GSRP Grant No. NGT5-50447. #### References - [1] Buckmaster, J. D. "Edge-flames." *Prog Energy Comb. Sci.* 28 (2002): 435–475. - [2] Daou, R., J. Daou and J. Dold. "Effect of volumetric heat loss on triple-flame propagation." *Proc. Combust. Inst.* 29 (2002): 1559–1564. - [3] Daou, R., J. Daou and J. Dold. "Effect of heat-loss on flame-edges in a premixed counterflow." *Combust. Theory Modelling* 7 (2003): 221–242. - [4] Daou, R., J. Daou and J. Dold. "The effect of heat loss on flame edges in a non-premixed counterflow within a thermo-diffusive model." *Combust. Theory* - Modelling 8 (2004): 683-699. - [5] Daou, J. and A. Liñan. "The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers." *Combust. Theory Modelling* 2 (1998): 449–477. - [6] Daou, J. and A. Liñan. "Ignition and extinction fronts in counterflowing premixed reactive gases." *Combust. Flame* 118 (1999): 479–488. - [7] Cha, M. S. and P. D. Ronney. "Propagation rates of nonpremixed edge-flames." *Combust. Flame* (2006): In press. - [8] Clayton, D. B., M. S. Cha and P. D. Ronney. "Characteristics of Premixed Flames for Edge-flames in a Counterflow Slot Burner." Proceedings of the Thirty-Second KOSCO Symposium (2006): 7-12. - [9] Kaiser, C., J. B. Liu and P. D. Ronney (2000). "Diffusive-thermal instability of counterflow flames at low Lewis number." 38th Aerospace Sciences Meeting & Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, January 11–14, 2000. [10] Verdarajan, T. G. and J. D. Buckmaster. - [10] Verdarajan, T. G. and J. D. Buckmaster. "Edge-flames in homogeneous mixtures." *Combust. Flame* 114 (1998): 267–273. - [11] Vedarajan, T. G., J. D. Buckmaster and P. D. Ronney. "Two-dimensional Failure Waves and Ignition Fronts in Premixed Combustion." *Proc. Combust. Inst.* 27(1998): 537–544