Power analysis for 3 ${\times}$ 3 Latin square design

3 ${\times}$ 3 라틴방격모형의 검정력 분석

  • Choi, Young-Hun (Department of Information and Statistics, Hanshin University)
  • 최영훈 (한신대학교 정보통계학과)
  • Published : 2009.03.31

Abstract

Due to the characteristics of 3 ${\times}$ 3 Latin square design which is composed of two block effects and one main effect, powers of rank transformed statistic for testing the main effect are very superior to powers of parametric statistic without regard to the type of population distributions. By order of when all three effects are fixed, when on one block effect is random, when two block effects are random, the rank transform statistic for testing the main effect shows relatively high powers as compared with the parametric statistic. Further when the size of main effect is big with one equivalent size of block effect and the other small size of block effect, powers of rank transformed statistic for testing the main effect demonstrate excellent advantage to powers of parametric statistic.

두 블럭인자와 하나의 주인자로 구성된 3 ${\times}$ 3 라틴방격모형의 특성으로 인하여 주효과를 검정하기 위한 순위변환 통계량의 검정력은 모집단의 분포유형에 상관없이 모수적 통계량의 검정력보다 전반적으로 월등히 높은 수준이다. 특히 세인자가 모두 고정인 경우, 하나의 블럭인자만이 랜덤인 경우, 두 블럭인자가 모두 랜덤인 경우의 순서로 주효과를 검정하기 위한 순위변환 통계량의 검정력이 모수적 통계량의 검정력에 비하여 상대적으로 높다. 또한 검정하고자 하는 주효과의 크기가 크되 동시에 동일크기의 하나의 블럭효과 및 또다른 블럭효과 크기는 상대적으로 작을수록 주효과를 검정하기 위한 순위변환 통계량의 검정력은 모수적 통계량의 검정력보다 상대적 우위성을 갖는다.

Keywords

References

  1. Akritas, M. G. and Arnold, S. F. (1994). Fully nonparametric hypotheses for factorial designs. Journal of the American Statistical Association, 89, 336-343. https://doi.org/10.2307/2291230
  2. Akritas, M. G. and Arnold, S. F. (2000). Asymptotics for analysis of variance when the number of levels is large. Journal of the American Statistical Association, 95, 212-226. https://doi.org/10.2307/2669539
  3. Akritas, M. G., Arnold, S. F. and Brunner, E. (1997). Nonparametric hypotheses and rank statistics for unbalanced factorial designs. Journal of the American Statistical Association, 92, 258-265. https://doi.org/10.2307/2291470
  4. Akritas, M. G. and Papadatos, N. (2004). Heteroscedastic one way ANOVA and lack of fit tests. Journal of the American Statistical Association, 99, 368-382. https://doi.org/10.1198/016214504000000412
  5. Choi, Y. H. (1998). A study of the power of the rank transform test in a 2(3) factorial experiment. Communications in Statistics, 27, 251-266.
  6. Choi, Y. H. (2006). Rank transformation technique in a two-stage two-level balanced nested design. The Korean Journal of Applied Statistics, 19, 111-120. https://doi.org/10.5351/KJAS.2006.19.1.111
  7. Choi, Y. H. (2008). Power comparison in a balanced factorial design with a nested factor. Journal of Korean Data & Information Science Society, 19, 1059-1071.
  8. Conover, W. J. and Iman, R. L. (1981). Rank transformations as a bridge between parametric and non-parametric statistics. The American Statistician, 35, 124-128. https://doi.org/10.2307/2683975
  9. Fabian, V. (1991). On the problem of interactions in the analysis of variance. Journal of the American Statistical Association, 86, 362-374. https://doi.org/10.2307/2290576
  10. Gorman, J. O. and Akritas, M. G. (2001). Nonparametric models and methods for designs with dependent censored data. Biometrics, 57, 88-95. https://doi.org/10.1111/j.0006-341X.2001.00088.x
  11. Hora, S. C. and Conover, W. J. (1984). The F statistic in the two-way layout with rank score transformed data. Journal of the American Statistical Association, 79, 668-673. https://doi.org/10.2307/2288415
  12. Hora, S. C. and Iman, R. L. (1988). Asymptotic relative eciencies of the rank transformation procedure in randomized complete block design. Journal of the American Statistical Association, 83, 462-470. https://doi.org/10.2307/2288863
  13. Jang, I. B. and Kim, B. W. (2002). Reference priors in a two way mixed e ects analysis of variance model. Journal of Korean Data & Information Science Society, 13, 317-328.
  14. Kepner, J. L. and Robinson, D. H. (1988). Nonparametric methods for detecting treatment effects in repeated-measures designs. Journal of the American Statistical Association, 83, 456-461. https://doi.org/10.2307/2288862
  15. Park, D. K. and Kim, H. S. (2003). A new approach for selecting fractional factorial designs. Journal of Korean Data & Information Science Society, 14, 707-714.
  16. Thompson, G. L. (1991). A note on the rank transform for interactions. Biometrika, 78, 697-701. https://doi.org/10.1093/biomet/78.3.697