References
- D. Hennings and G. Rosenstein, “Temperature-stable Dielectrics based on Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67 249-54 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb18841.x
-
C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, and W. Huebner, “Structure Property Relationships in Core-shell
$BaTiO_3$ -LiF Ceramics,” J. Mater. Res., 8 [4] 871-79 (1993) https://doi.org/10.1557/JMR.1993.0871 - S.H. Yoon, J. H. Lee, D. Y. Kim, and N. M. Hwang, “Coreshell Structure of Acceptor-rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., 85 [12] 3111-13 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00593.x
- T. R. Armstrong and R. C. Buchanan, “Influence of Coreshell Grains on the Internal Stress State and Permittivity Response of Zirconia-modified Barium Titanate,” J. Am. Ceram. Soc., 73 [5] 1268-73 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05190.x
-
H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato, and T. Okuda, “The Effect of MgO and Rare-earth Oxide on Formation Behavior of Core-shell Structure in
$BaTiO_3$ ,” Jpn. J. Appl. Phys., 36 [9B] 5954-57 (1997). https://doi.org/10.1143/JJAP.36.5954 -
H. Chazono and M. Fujimoto, “Sintering Characteristics and Formation Mechanisms of Core-shell Structure in
$BaTiO_3$ -$Nb2O_5$ -$Co_3O_5$ Ternary System,” Jpn. J. Appl. Phys., 34 [9B] 5354-59 (1995). https://doi.org/10.1143/JJAP.34.5354 -
H. Chazono and H. Kishi, “Sintering Characteristics in
$BaTiO_3$ -$Nb_2O_5$ -$Co_3O_4$ Ternary System: I, Electrical Properties and Microstructure,” J. Am. Ceram. Soc., 82 [10] 2689-97 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02143.x -
W. Grogger, F. Hofer, P. Warbichler, A. Feltz, and M. Ottlinger, “Imaging of the Core-shell Structure of Doped
$BaTiO_3 Ceramics by Energy Filtering TEM,” Phys. Stat. Sol., A166 315-25 (1998). https://doi.org/10.1002/(SICI)1521-396X(199803)166:1<315::AID-PSSA315>3.0.CO;2-2 -
C. S. Chen, C. C. Chou, and I. N. Lin, “Microstructure of X7R Type Base-metal-electroded
$BaTiO_3$ Capacitor Materials Co-doped with$MgO/Y_2O_3$ Additives,” J. Electroceram., 13 567-71 (2004). https://doi.org/10.1007/s10832-004-5159-y -
Y. Mizuno, T. Hagiwara, H. Chazono, and H. Kishi, “Effect of Milling Process on Core-shell Microstructure and Electrical Properties for
$BaTiO_3$ -based Ni-MLCC,” J. Eur. Ceram. Soc., 21 1649-52 (2001). https://doi.org/10.1016/S0955-2219(01)00084-X -
Y. Mizuno, T. Hagiwara, H. Kishi, A. Kirianov, and H. Ohsato, “Influence of the Milling Process on Microstructure and Electrical Properties for
$BaTiO_3$ -based Ni-MLCC,” J. Ceram. Soc. Jpn., 112 [1] S493-497 (2004). - G. Arlt, D. Hennings, and G. de With, “Dielectric Properties of Fine-grained Barium Titanate Ceramics,” J. Appl. Phys., 58 1619-25 (1985). https://doi.org/10.1063/1.336051
- Y. Fujikawa, Y. Umeda, and F. Yamane, “Analysis on the Sintering Process of X7R MLCC Materials,” J. Jpn. Soc. Powder Powder Metallurgy, 51 839-44 (2004). https://doi.org/10.2497/jjspm.51.839
- J. Zhi, A. Chen, Y. Zhi, P.M. Vilarinho, and J. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics,” J. Am. Ceram. Soc., 82 1345-48 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01921.x
- S. Wada, M. Yano, T. Suzuki, and T. Noma, “Crystal Structure of Barium Titanate Fine Particles Including Mg and Analysis of Their Lattice Vibration,” J. Mater. Sci., 35 3889-902 (2000). https://doi.org/10.1023/A:1004841716691
- G. K. Williamson and W. H. Hall, “X-ray Line Broadening from Filed Aluminium and Wolfram,” Acta Metall., 1 22-31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
Cited by
- Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3 vol.3, pp.1, 2014, https://doi.org/10.1007/s40145-014-0096-y