Abstract
This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.
이 논문은 RFID 데이터 스트림의 변화 특성을 고려하면서 단일 패스로 이동궤적 패턴을 실시간 추출하는 새로운 기법을 제안한다. RFID, 센서와 무선 네트워크 기술의 발달로 인해 현실 세계에서 실시간으로 데이터를 수집하고 유용한 패턴을 탐사하는 연구에 많은 관심이 집중되고 있다. 스트림 데이터에서 순차 패턴 또는 이동궤적 패턴을 탐사하는 기존의 연구 기법들은 반복적으로 데이터베이스 또는 트리를 탐색하는 고비용 문제점과 시간의 변화에 따르는 동적 특성을 실시간으로 패턴에 반영하지 못하는 단점이 있다. 제안하는 기법은 시간에 따라 RFID 데이터 스트림의 변화를 정확히 반영하기 위해 시간진화 그래프를 이용하여 이진 시간관계 테이블에 빈발한 2-길이 항목간 정보를 유지한다. 또한 다중 패스의 문제점을 해결하기 위해 t 시점에 이진 시간관계 테이블을 이용하여 k-길이의 후보 이동궤적 패턴을 추론하고, t+1 시점에서 후보 패턴을 검증하는 과정을 통해 k-길이 이동궤적 패턴을 단일 패스로 추출한다. 실험결과 제안하는 기법은 기존의 Apriori-계열 기법들과 비교하여 약 7% 정도 후보 패턴의 비율이 적게 생성되어 시간 및 공간 복잡도 측면에서 우수한 성능을 보였다.