DOI QR코드

DOI QR Code

천식 모델 생쥐에서 필발이 CD25+T 세포수, IgE, Histamine 생성량과 in vitro에서 Th1/Th2 Cytokine Balance에 미치는 영향

Effects of Piperis Longi Fructus on Regulatory T Cells Number, IgE, Histamine Production in Asthma Model Mice and Th1/Th2 Cytokine Balance in vitro

  • 이영철 (상지대학교 한의과대학 본초학교실) ;
  • 김승형 (대전대학교 동서생명과학연구원)
  • Lee, Young-Cheol (Department of Herbology, College of Oriental Medicine, Sangji University) ;
  • Kim, Seung-Hyung (Institute of Traditional Medicine & Bioscience, Daejeon University)
  • 발행 : 2009.03.30

초록

Objectives : It has been recently shown that Piperis Longi Fructus (PLF) is involved in the reduction of eosinophil recruitment and production of Th2 cytokines in vivo. However, the main therapeutic mechanisms of PLF remains a matter of considerable debate. To investigate the therapeutic mechanisms of PLF, we examined the influence of PLF on regulatory T cells number, IgE, histamine production in vivo and Th1/Th2 cytokine balance in vitro. Methods : All mice were immunized on two different days (21 days and 7 days before inhalational exposure) by i.p. injections of 0.2 $m\ell$ alum-precipitated Ag containing 100 ${\mu}g$ of OVA bound to 4 mg of aluminum hydroxide in PBS. Seven days after the second sensitization, mice were exposed to aerosolized ovalbumin for 30 min/day on 3 days/week for 12 weeks(at a flow rate of 250 L/min, 2.5% ovalbumin in normal saline) and PLF (150 mg/kg) were orally administered 3 times a week for 8 weeks. Splenocytes from C57BL/6 mice at 8 weeks of age were stimulated with anti-CD3 (1 mg/ml) plus anti-CD28 (1 mg/ml) antibody for 48hrs. IL-4 and IFN-$\gamma$ in the culture supernatants were measured by ELISA Results : The suppressive effects of PLF on asthma model were demonstrated by the increase the number of regulatory T cells and by reducing IgE, histamine production in vivo and modulation of Th1/Th2 cytokine balance. Conclusions : These results indicate that PLF has a deep inhibitory effects on asthma model mice by increase the number of regulatory T cells, and by reducing IgE, histamine production.

키워드

참고문헌

  1. Shi HZ, Qin XJ. CD4+CD25+ regulatory T lymphocytes in allergy and asthma. Allergy. 2005 ; 60 : 986-95. https://doi.org/10.1111/j.1398-9995.2005.00844.x
  2. Xu D, Liu H, Komai-Koma M, Campbell C, McSharry C, Alexander J, Liew FY. CD4+ CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol. 2003 ; 170 : 394-9. https://doi.org/10.4049/jimmunol.170.1.394
  3. Aseffa A, Gumy A, Launois P, MacDonald HR, Louis JA, Tacchini-Cottier F. The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+CD25+ T cells. J Immunol. 2002 ; 169 : 3232-41. https://doi.org/10.4049/jimmunol.169.6.3232
  4. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol. 1999 ; 162 : 5317-26.
  5. Kuniyasu Y, Takahashi T, Itoh M, Shimizu J, Toda G, Sakaguchi S. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int Immunol. 2000 ; 12 : 1145-55. https://doi.org/10.1093/intimm/12.8.1145
  6. Dunnill MS. The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol. 1960 ; 13 : 27-33. https://doi.org/10.1136/jcp.13.1.27
  7. Wilson JW, Djukanovic R, Howarth PH, Holgate ST. Lymphocyte activation in bronchoalveolar lavage and peripheral blood in atopic asthma. Am Rev Respir Dis. 1992 ; 145 : 958-60. https://doi.org/10.1164/ajrccm/145.4_Pt_1.958
  8. Gavett SH, Chen X, Finkelman F, Wills-Karp M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol. 1994 ; 10 : 587-93. https://doi.org/10.1165/ajrcmb.10.6.8003337
  9. Humbert M, Durham SR, Ying S, Kimmitt P, Barkans J, Assoufi B, Pfister R, Menz G, Robinson DS, Kay AB, Corrigan CJ. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against intrinsicasthma being a distinct immunopathologic entity. Am J Respir Crit Care Med. 1996 ; 154 : 1497-504. https://doi.org/10.1164/ajrccm.154.5.8912771
  10. Humbert M, Durham SR, Kimmitt P, Powell N, Assoufi B, Pfister R, Menz G, Kay AB, Corrigan CJ. Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol. 1997 ; 99 : 657-65. https://doi.org/10.1016/S0091-6749(97)70028-9
  11. Chung KF, Barnes PJ. Cytokines in asthma. Thorax. 1999 ; 54 : 825-57. https://doi.org/10.1136/thx.54.9.825
  12. Lee YC. The Role of Piperis Longi Fructus for Th1/Th2 Cytokines Production and Gene Expression in Murine Model of Asthma. The Korea Journal of Herbology. 2005 ; 20(1) : 1-8.
  13. Lee YC. Inhibitory Effects of Piperis Longi Fructus on the Accumulation of Eosinophils into Airways and Cell Proliferation. The Korea Journal of Herbology. 2004 ; 19(4) : 17-25.
  14. Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS. A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem. 2002 ; 50(13) : 3765-7. https://doi.org/10.1021/jf011708f
  15. Vedhanayaki G, Shastri GV, Kuruvilla A. Analgesic activity of Piper longum Linn. root. Indian J Exp Biol. 2003 ; 41(6) : 649-51.
  16. Virinder SP, Subash CJ, Kirpal SB, Rajani J, Poonam T, Amitabh J, Om DT, Ashok KP, Jesper W, Carl EO, Per MB. Phytochemistry of genus Piper. Phytochemistry. 1997 ; 46 : 597-673. https://doi.org/10.1016/S0031-9422(97)00328-2
  17. Sawangjaroen N, Sawangjaroen K, Poonpanang P. Effects of Piper longum fruit, Piper sarmentosum root and Quercus infectoria nut gall on caecal amoebiasis in mice. J Ethnopharmacol. 2004 ; 91(2-3) : 357-60. https://doi.org/10.1016/j.jep.2004.01.014
  18. Stohr JR, Xiaso PG, Bauer R. Constituents of Chinese piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. Journal of Ethanopharmacology. 2001 ; 75 : 133-139. https://doi.org/10.1016/S0378-8741(00)00397-4
  19. Shoji N, Umeyama A, Saito N, Takemoto T, Kajiwara A, Ohizumi Y. Dehydropipernonaline, an amide possessing coronary vasodilating activity, isolated from Piper longum L. J Pharm Sci. 1986 ; 75(12) : 1188-9. https://doi.org/10.1002/jps.2600751215
  20. Sunila ES, Kuttan G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol. 2004 ; 90(2-3) : 339-46. https://doi.org/10.1016/j.jep.2003.10.016
  21. De Monchy JG, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, de Vries K. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis. 1985 ; 131 : 373.
  22. Beasley R, Roche WR, Roberts JA, Holgate ST. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989 ; 139 : 806. https://doi.org/10.1164/ajrccm/139.3.806
  23. Kroegel C, Liu MC, Hubbard WC, Lichtenstein LM, Bochner BS. Blood and bronchoalveolar eosinophils in allergic subjects after segmental antigen challenge: surface phenotype, density heterogeneity, and prostanoid production. J Allergy Clin Immunol. 1994 ; 93 : 725. https://doi.org/10.1016/0091-6749(94)90252-6
  24. Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma: relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 ; 137 : 62. https://doi.org/10.1164/ajrccm/137.1.62
  25. Huang TJ, MacAry PA, Kemeny DM, Chung KF. Effect of CD8+ T-cell depletion on bronchial hyper-responsiveness and inflammation in sensitized and allergen-exposed Brown-Norway rats. Immunology. 1999 ; 96 : 416-23. https://doi.org/10.1046/j.1365-2567.1999.00699.x
  26. Suzuki M, Taha R, Ihaku D, Hamid QA, Martin JG. CD8+ T cells modulate late allergic airway responses in Brown Norway rats. J Immunol. 1999 ; 163 : 5574-81.
  27. Erwin W, Gelfand MD and Azzeddine Dakhama. CD8+ T lymphocytes and leukotriene B4: Novel interactions in the persistence and progression of asthma. J Allergy Clin Immunol. 2006 ; 117 : 577-82. https://doi.org/10.1016/j.jaci.2005.12.1340
  28. Thornton AM, Shevach EM. CD25+CD4+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998 ; 188 : 287-96. https://doi.org/10.1084/jem.188.2.287
  29. Kursar M, Bonhagen K, Fensterle J, Kohler A, Hurwitz R, Kamradt T, Kaufmann SH, Mittrucker HW. Regulatory CD25+CD4+ T cells restrict memory CD8+ T cell responses. J Exp Med. 2002 ; 196 : 1585-92. https://doi.org/10.1084/jem.20011347
  30. Curotto de Lafaille MA, Lafaille JJ. CD4+ regulatory T cells in autoimmunity and allergy. Curr Opin Immunol. 2002 ; 14 : 771-8. https://doi.org/10.1016/S0952-7915(02)00408-9
  31. Feng C, Woodside KJ, Vance BA, El-Khoury D, Canelles M, Lee J, Gress R, Fowlkes BJ, Shores EW, Love PE. A potential role for CD69 in thymocyte emigration. Int Immunol. 2002 ; 14 : 535-44. https://doi.org/10.1093/intimm/dxf020
  32. Rao A, Avni O. Molecular aspects of T-cell differentiation. Br Med Bull. 2000 ; 56(4) : 969-84. https://doi.org/10.1258/0007142001903634
  33. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996 ; 383(6603) : 787-93. https://doi.org/10.1038/383787a0
  34. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 ; 169 : 59-72. https://doi.org/10.1084/jem.169.1.59