DOI QR코드

DOI QR Code

Isolation and Characterization of Calmodulin Gene from Panax ginseng C. A. Meyer

  • Wasnik, Neha G. (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Yu-Jin (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Se-Hwa (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Sathymoorthy, S. (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Pulla, Rama Krishna (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Parvin, Shohana (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Senthil, Kalaiselvi (Avinashilingam University for Women) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
  • 발행 : 2009.03.31

초록

$Ca^{2+}$ and calmodulin (CaM), a key $Ca^{2+}$ sensor in all eukaryotes, have been implicated for defense responses of plants. Eukaryotic CaM contains four structurally and functionally similar $Ca^{2+}$ domains named I, II, III and IV. Each $Ca^{2+}$ binding loop consists of 12 amino acid residues with ligands arranged spatially to satisfy the octahedral symmetry of $Ca^{2+}$ binding. To investigate the altered gene expression and the role of CaM in ginseng plant defense system, cDNA clone containing a CaM gene, designated PgCaM was isolated and sequenced from Panax ginseng. PgCaM, which has open reading frame of 450 nucleotides predicted to encode a precursor protein of 150 amino acid residues. Its sequence shows high homologies with a number of other CaMs, with more similarity to CaM of Daucus carota (AAQ63461). The expression of PgCaM in different P. ginseng organs was analyzed using real time PCR. The results showed that PgCaM expressed at different levels in young leaves, shoots, and roots of 3-week-old P. ginseng. In addition, the expressions of PgCaM under different abiotic stresses were analyzed at different time intervals.

키워드

참고문헌

  1. Reddy, V. S., Ali, G. S. and Reddy, A. S. N. : Characterization of a pathogen-induced CaM-binding protein: mapping of four $Ca^{2+}$-dependent CaM-binding domains. Plant Mol. Biol. 52, 143-159 (2003) https://doi.org/10.1023/A:1023993713849
  2. Anderson, J. M. and Cormier, M. J. : Calcium dependent regulation of NAD kinase. Biochem. Biophys. Res. Commun. 84, 595-602 https://doi.org/10.1016/0006-291X(78)90747-7
  3. Lukas, T. J., Iverson, D. B., Schleicher, M. and Watterson, D. M. : Structural characterization of a higher plant calmodulin, SPINACIA OLERACEA. Plant Physiol. 75, 788-795 (1984) https://doi.org/10.1104/pp.75.3.788
  4. Chiasson, D., Ekengren, S. K., Martin, G. B., Dobney, S. L. and Snedden, W. A. : Calmodulin-like proteins from arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. Tomato. Plant Mol. Biol. 58, 887-897 (2005) https://doi.org/10.1007/s11103-005-8395-x
  5. Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. and Tan. M. : Calcium-CaM is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays). Plants New Phytol. 173, 27-38 (2007) https://doi.org/10.1111/j.1469-8137.2006.01888.x
  6. Yamauchi, T. : Neuronal Ca2_/CaM-Dependent Protein Kinase II—Discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol. Pharm. Bull., 28(8) 1342-1354 (2005) https://doi.org/10.1248/bpb.28.1342
  7. Sung, W. S. and Lee, D. G. : In Vitro Candidacidal action of korean red ginseng saponins against Candida albicans. Biol. Pharm. Bull. 31(1), 139-142 (2008) https://doi.org/10.1248/bpb.31.139
  8. Nam, M. H., Kim, S. I. ,Liu, J. R., Yang, D. C., Lim, Y. P., Kwon, K. H., Yoo, S. J. and Park, Y. M. : Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer). J. Chromatography. 815, 147-155 (2005) https://doi.org/10.1016/j.jchromb.2004.10.063
  9. Heo, W. D., Lee, S. H., Kim, M. C., Kim, J. C., Chung, W. S., Chun, H. J., Lee, K. J, Park, C. Y., Park, H. C., Choi, J. Y. and Cho, M. J. : Involvement of specific CaM isoforms in salicylic acid-independent activation of plant disease resistance responses. Plant Biol. 96, 766–771 (1999)
  10. Murashige, T. and Skoog, F. : A revised medium for rapid growth and bio assay with tobacco tissue cultures. Plant Physiol. 15, 473-499 (1962) https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  11. Alschul, S. F, Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. : Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389-3402 (1997) https://doi.org/10.1093/nar/25.17.3389
  12. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. : The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24), 4876-4882 (1997) https://doi.org/10.1093/nar/25.24.4876
  13. Kumar, S., Tamura, K. and Nei, M. : MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief in Bioinform. 5(2) 150-163 (2004) https://doi.org/10.1093/bib/5.2.150
  14. Felesenstein, J. : Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39(4), 783-791 (1985) https://doi.org/10.2307/2408678
  15. Geourjon, C. and Deleage, G. : SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 6, 681-684 (1995)
  16. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Apple, R. D. and Bairoch, A. : Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, Humana Press., pp.571-607 (2005)
  17. Melkko, S., halin, C., Borsi, L., Zardi, L. and Neri, D. : An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int. J. Radiation Oncology Biol. Phy. 54 (5), 1485-1490 (2002) https://doi.org/10.1016/S0360-3016(02)03927-5
  18. Hamdane, D., Laurent, K., Dewilde, S., Uzan, J., Burmester, T., Thomas, H., Moens, L. and Marden, M. C. : Hyperthermal stability of neuroglobin and cytoglobin. FBBS J. 272, 2076-2084 (2005) https://doi.org/10.1111/j.1742-4658.2005.04635.x
  19. Yang, T., yadun, S. l., Feldman, M. and Fromm, H. : Developmentally regulated organ, tissue, and cell specific expression of calmodulin genes in common wheat. Plant Mol. Biol. 37, 109–120 (1998) https://doi.org/10.1023/A:1005902905512
  20. Perera, I. Y. and Zielinski, R. E. : Structure and expression of the arabidopsis CAM3 calmodulin gene Plant Mol. Biol. 19, 649-664 (1992) https://doi.org/10.1007/BF00026791
  21. Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. : Self-Reporting arabidopsis expressing pH and [$Ca^{2+}$] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol. 134, 898-908 (2004) https://doi.org/10.1104/pp.103.032508
  22. Snedden, W. A. and Fromm, H. : Calmodulin as a versatile calcium signal transducer in plants. New Phytologist. 151, 35-66 (2001) https://doi.org/10.1046/j.1469-8137.2001.00154.x
  23. Bouche, N. Yellin, A. Snedden, W. A. and Fromm, H. : Plant-specific CaM-binding proteins. Ann. Rev. Plant Biol. 56, 435-466 (2005) https://doi.org/10.1146/annurev.arplant.56.032604.144224
  24. Yang, T. and Poovaiah, B. W. : Calcium/CaM-mediated signal network in plants. Trends in Plant Sci., 8, 505-512 (2003) https://doi.org/10.1016/j.tplants.2003.09.004

피인용 문헌

  1. Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng vol.39, pp.7, 2012, https://doi.org/10.1007/s11033-012-1564-5