Effective Demand Selection Scheme for Satisfying Target Service Level in a Supply Chain

공급망의 목표 서비스 수준 만족을 위한 효과적인 수요선택 방안

  • Published : 2009.03.31

Abstract

In reality, distribution planning for a supply chain is established using a certain probabilistic distribution estimated by forecasting. However, in general, the demands used for an actual distribution planning are of deterministic value, a single value for each of periods. Because of this reason the final result of a planning has to be a single value for each period. Unfortunately, it is very difficult to estimate a single value due to the inherent uncertainty in the probabilistic distribution of customer demand. The issue addressed in this paper is the selection of single demand value among of the distributed demand estimations for a period to be used in the distribution planning. This paper proposes an efficient demand selection scheme for minimizing total inventory costs while satisfying target service level under the various experimental conditions.

Keywords

References

  1. 박기태, 권익현, 김성식, '시뮬레이션을 통한 공급 사슬내의 효과적인 수요 선택 방안에 관한 연구', 한국SCM학회지, 4권, 1호 (2004) : pp. 61-69
  2. 박기태, 권익현, 김성식, '서비스 수준 제약하의 공급망 분배계획을 위한 수요선택 방안에 관한 연구', 한국시뮬레이션학회 논문지, 15권, 3호 (2006) : pp. 39-47
  3. 박창규, '공급사슬 내의 재고관리를 위한 모의 실험에 기초한 발견적 기법', IE Interfaces, 13권, 3호 (2000) : pp. 424-430
  4. 안재성, 권익현, 김성식, 'Rolling horizon 환경하에서 다단계 재고 모형의 분배계획 수립에 관한 연구', IE Interfaces, Vol.16, No.4 (2003) : pp. 441-449
  5. 윤병희, 권익현, 김성식, '예측 수요분포가 변하는 환경 하에서의 공급사슬 계획', 한국SCM학회지, 4권, 2호 (2004) : pp. 1-12
  6. Axsater, S., Inventory Control, Springer (2006)
  7. Chen, F., Drezner, Z., Ryan, J.K. and Simchi-Levi, D., 'Quantifying the bullwhip effect in a simple supply chain : The impact of forecasting, lead times, and information', Management Science, Vol.46, No.3 (2000) : pp. 436-443 https://doi.org/10.1287/mnsc.46.3.436.12069
  8. Chopra, S. and Meindl, P., Supply Chain Management: Strategy, Planning, and Operation, Prentice-Hall (2006)
  9. Clark, A.J. and Scarf, H., 'Optimal policies for a multi-echelon inventory problem', Management Science, Vol.6, No.4 (1960) : pp. 475-490 https://doi.org/10.1287/mnsc.6.4.475
  10. Diks, E.B., de Kok, A.G. and Lagodimos, A.G., 'Multi-echelon systems : A service measure perspective', European Journal of Operational Research, Vol.95 (1996) : pp. 241-263 https://doi.org/10.1016/S0377-2217(96)00120-8
  11. Forrester, J.W., Industrial Dynamics, MIT Press (1961)
  12. Kwon, I.H., Kim, S.S. and Baek, J.G., 'A simulation based heuristic for serial inventory systems under fill-rate constraints', International Journal of Advanced Manufacturing Technology, Vol.31, Nos.3-4 (2006) : pp. 297-304 https://doi.org/10.1007/s00170-005-0193-8
  13. Kwon, I.H., Kim, C.O., Jun, J. and Lee, J.H., 'Case-based myopic reinforcement learning for satisfying target service level in supply chain', Expert Systems with Applications, Vol.35, Nos.1-2 (2008) : pp. 389-397 https://doi.org/10.1016/j.eswa.2007.07.002
  14. Shang, K.H. and Song, J.S., 'Newsvendor bounds and heuristic for optimal policies in serial supply chains', Management Science, Vol.49, No.5 (2003) : pp. 618-638 https://doi.org/10.1287/mnsc.49.5.618.15147
  15. Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., Designing and Managing the Supply Chain, McGraw-Hill (2007)
  16. Vollmann, T.E., Berry, W.L., Whybark, D.C. and Jacobs, F.R., Manufacturing Planning and Control Systems for Supply Chain Management, McGraw-Hill (2004)