등숙기 기온 및 일사량이 벼 종실중 및 종실질소함량에 미치는 영향

The Effect of Temperature and Radiation on Grain Weight and Grain Nitrogen Content in Rice

  • 발행 : 2009.03.31

초록

본 연구는 다양한 등숙기의 온도 및 일사량 조건에서 종실중 및 종실질소 함량 변화를 조사하여 등숙기 생육온도와 일사량이 벼 종실중 및 종실질소함량의 형성과정과 이들의 최종산물에 미치는 영향을 분석하고자 하였던 바 그 결과를 요약하면 다음과 같다. 1. 최종 종실중은 연차 및 품종에 관계없이 등숙기 일사량이 높을수록 큰 경향이었으며, 최종 종실중에 도달하는 출수일수는 짧아지는 경향이었다. 2. 종실 질소의 축적기간은 등숙기 적산일사량에 크게 영향을 받았으나 최종 종실질소함량은 큰 영향을 받지 않았다. 3. 유효적산온도(임계온도 $7^{\circ}C$)는 등숙기 생육온도에 관계없이 종실중 및 종실질소함량 변이를 잘 설명하였으나, 유효적산온도 또는 적산일사량에 따른 종실중 및 종실질소 함량은 등숙기 일사량간 변이가 매우 커 이들 단일 요인으로는 등숙기 일사량에 따른 종실중 및 종실질소함량 변이를 설명하는데 한계가 있었다. 4. 유효적산온도 및 적산일사량의 상승적은 등숙기 일사량에 관계없이 종실중 및 종실질소함량 변이를 잘 묘사하였다.

This experiment was conduced to clarify the effects of growth temperature and radiation on grain weight increase and grain nitrogen accumulation in rice. Final grain weight became heavy and grain-filling duration shortened with radiation increase during grain-filling period (GFP). In addition, grain nitrogen accumulated duration during GFP was influenced strongly, but final grain nitrogen content was influenced slightly by accumulated radiation (AR). Accumulated effective temperature (AET) described well variation of grain weight (GW) and grain nitrogen content (GN), but GW and GN showed large variation under different radiation during GFP, when related with AET or AR, indicating that there was a limiting in describing variation of GW and GN by any single factor between AET and AR. However, AET multiplied by AR could describe relatively well the variations of GW and GN regardless of radiation during GFP.

키워드

참고문헌

  1. Aimi, R. 1967. Cell-physiological and biochemical aspects in the physiology of ripening. IRC Newsletter special : 106-111
  2. Ebata, M. 1990. Effective unit summation and base temperature on the development of rice plant: II. On heading, flowering, kernel development and maturing of rice. Jpn. J. Crop Sci. 59 : 223-238
  3. Hawker, J. S. Jenner, D. F. 1993. High temperature affects the activity of enzyme in the committed pathway of starch synthesis in developing wheat endosperm. Aust. J. Plant Physiol. 20 : 197-209 https://doi.org/10.1071/PP9930197
  4. Inaba, K. Sato, K. 1976. High temperature injury of ripening in rice plant. VI. Enzymes activities of kernel as influenced by high temperature. Proc. Crop. Sci. Soc. Jpn. 45 : 162-176 https://doi.org/10.1626/jcs.45.162
  5. Kim, J. J., 1983. Studies on the effect of temperature during the reduction division stage and the grain filling stage in rice plant. II. Effect of air temperature at the grain filling stage in Indica-Japonica crosses. Kor. J. Crop Sci. 28 : 58- 75
  6. Kobata, T. Uemuki, N. 2004. High temperature during the grain-filling period do not the potential grain dry matter increase of rice. Agron. J. 96 : 406-414 https://doi.org/10.2134/agronj2004.0406
  7. Morita, S., Yonemaru, J. Takanashi, J. 2005. Grain growth and endosperm cell size under high night temperature in rice (Oryza sativa L.). Ann. Bot. 95 : 695-701 https://doi.org/10.1093/aob/mci071
  8. Nishiyama, I. 1985. Physiology of cool weather damage in rice. Hokkaido Univ., Sapporo, Japan
  9. Tanaka, A., Vergara, B. S. 1967. Growth habit and ripening of rice plants in relation to the environmental conditions in the far east. IRC Newsletter special issue: 26-42
  10. Wallwork, M. A. B., Logue, S. J., MacLeod, L. C., Jenner, C. F. 1998. Effects of high temperature during grain-filling on starch synthesis in developing barley grain. Aust. J. Plant Physio. 25 : 173-181 https://doi.org/10.1071/PP97084
  11. Zhu Y, Li W, Jing Q, Cao W., Horie T. 2007. Modeling grain protein formation in relation to nitrogen uptake and remobilization in rice plant. Agric. China 1(1) : 8-16 https://doi.org/10.1007/s11703-007-0002-2
  12. 角田公正, 1964. 水溫と稻の生育收量との關係に關する實驗的硏究. 農伎硏報告. A(11)
  13. 松島省三. 1957. 水滔收量の成立と豫察に關する作物學的硏究. 農林技術硏究所硏究報告 A5 : 1-150
  14. 林建一. 1966. 水滔品種の光利用效率と栽植密度との關係. 日本作物學會記事 35 : 205-215
  15. 농촌진흥청. 2000. 농업연구를 위한 통계적 방법. 331-336