고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy

  • 정해선 (한양대학교 공과대학 원자력공학과 방사선해석연구실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학과) ;
  • 금오연 (경북대학교 전자전기컴퓨터학부) ;
  • 김찬형 (한양대학교 공과대학 원자력공학과 방사선해석연구실)
  • Jeong, Hae-Sun (Radiation Interactions and Dosimetry Lab, Department of Nuclear Engineering, Hanyang University) ;
  • Han, Young-Yih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kum, O-Yeon (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Chan-Hyeong (Radiation Interactions and Dosimetry Lab, Department of Nuclear Engineering, Hanyang University)
  • 발행 : 2009.12.31

초록

고에너지 광자선 기반의 소조사면을 이용한 방사선 치료 시, 조사면의 가장자리에서의 급격한 선량 변화, 전자의 비평형상태, 검출기의 체적 효과 및 검출기와 팬텀 물질과의 불균질성 등으로 인하여 정확한 선량 측정이 어렵다. 따라서 본 연구에서는 선량 측정을 위해 널리 사용되는 전리함, 다이오드 검출기 및 물과 등가인 재질로 이루어져 측정 시 오차 유발 요인이 적은 것으로 알려진 $GAFCHROMIC^{(R)}$ EBT 필름을 이용하여 팬텀 내 소조사면에서의 흡수선량을 측정하고, 각 검출기들의 특성 및 EBT 필름의 유용성을 평가하였다. 각 검출기는 팬텀 표면으로부터 10 cm 깊이에 장착, 선원과의 거리(SAD)를 100 cm로 하였으며, 6 MV X-선 빔을 6개 조사면($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$$0.5{\times}0.5\;cm^2$)으로 팬텀에 조사하였다. $5{\times}5\;cm^2{\sim}1.5{\times}1.5\;cm^2$ 조사면의 경우, 모든 검출기들의 선량값이 1% 이내로 정확하게 일치하였으나, $1{\times}1\;cm^2$ 이하 조사면에서는 전리함을 이용한 측정결과가 타 검출기들에 비해 선량값을 매우 낮게 평가하는 것으로 확인되었다. 이는 검출기 체적효과가 매우 큰 오차요인으로 작용한 것으로 예측되어, 이를 제거하기 위해 제적 효과를 보정하는 컨볼루션 이론을 적용하여 측정된 선량값을 보정하였다. 그 결과, 다이오드 검출기의 경우 $1{\times}1\;cm^2$의 조사면에서는 EBT 필름의 흡수선량보다 약 3%가 높게, 전리함은 약 1% 낮게 측정되었다. $0.5{\times}0.5\;cm^2$ 조사면에서 다이오드 검출기는 약 1% 높은 값을, 전리함은 7% 낮은 선량값을 나타내었다. 결론적으로 $GAFCHROMIC^{(R)}$ EBT 필름의 소조사면 선량측정기로서의 유용성을 확인하였으며, 몬테카를로 전산모사를 이용한 추가 검증이 수행될 예정이다.

In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

키워드

참고문헌

  1. Khan FM: The physics of Radiation Therapy. 2nd ed, Williams & Wilkins, Baltimore, MD(1994), pp. 481-506
  2. Capote R, Sanchez-Doblado F, Leal A, Lagares JI, Arrans R, Hartmann: An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets Med Phys 31(9):2416-2422 (2004) https://doi.org/10.1118/1.1767691
  3. Han Y, Shin EH, Lim C, et al: Dosimetry in an IMRT phantom designed for a remote monitoring program. Med Phys 35(6):2519-2527 (2008) https://doi.org/10.1118/1.2903440
  4. Cho CB, Park HG, Joo WI, Chough CK, Lee KJ, Rha HK: Stereotactic Radiosurgery with the Cyberknife for Pituitary Adenomas. J Korean Neurosergery Soc 45:157-163 (2009) https://doi.org/10.3340/jkns.2009.45.3.157
  5. Das IJ, Ding GX, Ahnesjo A: Small field: Nonequilibrium radiation dosimetry. Med Phys 35(1):206-215 (2008) https://doi.org/10.1118/1.2815356
  6. Bjarngard BE, Tsai JS, Rice RK: Doses on the central axes of narrow 6-MV x-ray beams. Med Phys 17:794-799 (1990) https://doi.org/10.1118/1.596475
  7. Martens C, Wagter CDe, Neve W: The value of the pinpoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol 45:2519-2530 (2000) https://doi.org/10.1088/0031-9155/45/9/306
  8. Saitoh H, Fujisaki T, Sakai R, Kunieda E: Dose distribution of narrow beam irradiation for small lung tumor. Int J Rad Oncol Biol Phys 53:1380-1387 (2002) https://doi.org/10.1016/S0360-3016(02)02893-6
  9. Westermark M, Arndt J, Nilsson B, Brahme A: Comparative dosimetry in narrow high-energy beams. Phys Med Biol 45:685-702 (2000) https://doi.org/10.1088/0031-9155/45/3/308
  10. Sankar A, Ayyangar KM, Nehru M, et al: Comparison of Kodak EDR2 and Gafchromic EBT Film for Intensity-modulated Radiation Therapy Dose Distribution Verification. Medical Dosimetry 31(4):273-282 (2006) https://doi.org/10.1016/j.meddos.2006.06.001
  11. Sankar A, Goplakrishna Kurup PG, Murali V, Ayyangar KM, Mothilal Nehru R, Velmurugan J: Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification. Med Phy 31(2):78-82 (2006) https://doi.org/10.4103/0971-6203.26693
  12. Jeong Hae Sun, Han Youngyih, Kum O Yeon, Kim Chan Hyeong: Development of a Multi-layer Solid Phantom for Intensity-Modulated Radiation Therapy. Transactions of the Korean Nuclear Society Autumn Meeting. 2008, PyeongChang, pp. 605-606
  13. Almond PR, Biggs PJ, Coursey BM, et al: AAPM's TG- 51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26(9):1847-1870 (1999) https://doi.org/10.1118/1.598691
  14. Seuntfens J, Olivares M, Evans M, Podgorsak E: Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols. Med Phys 32(9): 2945-2953 (2005) https://doi.org/10.1118/1.2012807
  15. Garcia-Vicente F, Delgado JM, Peraza C: Experimental determination of the convolution kernel for the study of the spatial response of a detector. Med Phys 25(2):341-347 (1998)
  16. Garcia-Vicente F, Delgado JM, Rodriguez C: Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel. Phys Med Biol 45:645-650 (2000) https://doi.org/10.1088/0031-9155/45/3/306
  17. Laub WU, Wong T: The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30(3):341-347 (2003) https://doi.org/10.1118/1.1544678
  18. Jeong Hae Sun, Han Youngyih, Kum Oyeon, Kim Chan Hyeong: New Pixel-based Algorithm to Correct Non-uniform Response of Radiochromic Film Scanner. Transactions of the Korean Nuclear Society Autumn Meeting. 2009, Jeju, pp. 871-872
  19. Wilcox E, Daskalov G, Nedialkova L: Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PROTM film scanners for use in IMRT dosimetry using Gafchromic and radiographic film. Med. Phys. 34(1):41-48 (2006) https://doi.org/10.1118/1.2402584
  20. Battum LJ, Hoffmans D, Piersma H, Heukelom S: Accurrate dosimetry with GafchromicTM EBT film of a 6 MV photon beam in water: What level is achievable? Med Phys 35(2):704-716 (2008) https://doi.org/10.1118/1.2828196
  21. Francescon P, Cora S, Cavedon C: Total scatter factors of small beams: A multidetector and Monte Carlo study. Med Phys 35(2):504-513 (2008) https://doi.org/10.1118/1.2828195
  22. Wilcox EE, Daskalov GM: Evaluation of GAFCHROMIC${\circledR}$ EBT film for CyberKnife dosimetry. Med Phys 34(6):1967-1974 (2007) https://doi.org/10.1118/1.2734384
  23. Araki F: Monte Carlo study of a Cyberknife stereotactic radiosurgery system. Med Phys 33(8):2955-2963 (2006) https://doi.org/10.1118/1.2219774
  24. Fuss M, Sturtewagen E, Wagter CD, Georg D: Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 52:4211-4225 (2007) https://doi.org/10.1088/0031-9155/52/14/013