기능적 자기공명영상을 이용한 침 연구에 있어서 개체 별 다양성이 그룹분석에 미치는 영향 연구

Effects of the Variability of Individual Data on the Group Results; an Acupuncture Study Using fMRI

  • 배성인 (경희대학교 한의과대학 한방응용의학과, 경희대학교 동서의학연구소 WHO 전통의학연구협력센터) ;
  • 장건호 (경희대학교 의과대학 동서신의학병원 영상의학과) ;
  • 류창우 (경희대학교 의과대학 동서신의학병원 영상의학과) ;
  • 임사비나 (경희대학교 한의과대학 한방응용의학과, 경희대학교 동서의학연구소 WHO 전통의학연구협력센터)
  • Bae, Seong-In (Department of Applied Korean Medicine, College of Korean Medicine, WHO Collaborating Centre for Traditional Medicine, East-West Medical Research Institute) ;
  • Jahng, Geon-Ho (Department of Radiology, East-West Neo Medical Center, School of Medicine, Kyunghee University) ;
  • Ryu, Chang-Woo (Department of Radiology, East-West Neo Medical Center, School of Medicine, Kyunghee University) ;
  • Lim, Sabina (Department of Applied Korean Medicine, College of Korean Medicine, WHO Collaborating Centre for Traditional Medicine, East-West Medical Research Institute)
  • 발행 : 2009.12.31

초록

최근 침의 신경생리학적 기전 및 경혈의 특이성을 밝혀내기 위해 기능적 자기공명영상(functional MRI, fMRI)을 이용한 연구가 활발히 진행되고 있다. fMRI 영상은 손가락 마주치기검사(Finger Taps test), 깜박이는 체크무늬 흑백영상에 의한 시각자극과 같은 연구주제에서 동일한 대상자의 반복되는 동일 검사에서 유의한 편차가 나타난다는 보고가 있다. 하물며 다른 개별 대상자의 fMRI 검사를 이용한 자침의 효과 및 경혈의 특이성 연구에 있어서 그룹분석 결과를 확고하게 하기 위해서는 개별 대상자들 간의 편차의 정도를 파악하고 개별데이터가 그룹 분석에 미치는 영향을 이해할 때 fMRI를 이용한 연구의 한계와 그 극복 방안에 대하여 본질적으로 접근할 수 있다고 판단된다. 따라서, 본 연구에서는 fMRI를 이용한 침 연구에서 개별분석 결과가 그룹분석 결과에 미치는 영향을 알아보는 것을 목적으로 계획되었다. 신체 건강한 성인 남자 15명을 대상으로 3.0 테슬러 자기공명영상장치를 이용하였다. 개인별 뇌구조영상과 뇌기능영상을 얻었으며, 뇌기능 영상은 진짜 침과 거짓 침 자극을 실시하였다. 자극방법은 블록방식(Block design)으로 30초의 비자극시간과 45초의 자극 시간을 3회 반복하여 총 3분 45초간 시행하였다. 자극은 우측 다리의 족삼리(ST36)를 이용하였고, 자침한 후 2 Hz의 속도로 침이 좌우로 반복하여 회전하도록 하여 자극을 주었다. 거짓 침 자극은 끝이 둥근 모양의 침으로 실시하였다. 뇌기능적 영상은 BOLD (Blood oxygenation level dependent) 경사자장 EPI (echo-planar imaging) 영상기법을 이용하였다. 각 피험자에 대한 개별 분석과 전체 피험자에 대한 그룹분석을 하였다. 족삼리 자침을 통한 개별분석 결과 거짓 침과 진짜 침 자극에 의한 뇌 활성화 반응은 개별 대상자들간의 편차가 큰 것으로 나타났으며, 이는 일부 대상자들에서만 나타난 뇌 활성화 반응의 결과가 그룹 분석의 결과에 크게 반영되었다는 것을 의미한다. 우리는 fMRI를 이용한 자침의 효과 및 경혈의 특이성 연구에 있어서 그룹분석 결과를 확고하게 하기 위해서는 개별 데이터들이 제공되어야 한다는 것을 제안한다.

Recently, functional MRI has been used to investigate the neurobiological mechanisms of acupuncture and the specificity of acupoint. The group data tend to be regarded as more important than the individual data in the most of previous studies. This study was designed to investigate the effect of the variability of individual data on the group results. A functional MRI (fMRI) of the whole brain was performed in fifteen healthy subjects during placebo and acupuncture stimulations at the ST36 acupoint. After remaining at rest for 30 seconds, the acupuncture was inserted and twisted at the rate of 2 Hz for 45 seconds and then the acupuncture was removed immediately. This process was repeated three times. Individual and group analyses were performed by voxel-based analyses using SPM2 software. Visual inspections of the activation and deactivation maps from individual sessions have shown the large variability across fifteen subjects. This means that the group data reflected the brain activation responses of only a few subjects. We suggest that the individual data should be presented to demonstrate the effect of acupuncture.

키워드

참고문헌

  1. Parrish TB, Schaeffer A, Catanese M, Rogel MJ: Functional magnetic resonance imaging of real and sham acupuncture. Noninvasively measuring cortical activation from acupuncture. IEEE Eng Med Biol Mag 24:35-40 (2005) https://doi.org/10.1109/MEMB.2005.1411346
  2. Kong J, Gollub RL, Webb JM, et al: Test-retest study of fMRI signal change evoked by electroacupuncture stimulation. Neuroimage 34:1171-1181 (2007) https://doi.org/10.1016/j.neuroimage.2006.10.019
  3. Jeun SS, Kim JS, Kim BS, et al: Acupuncture stimulation for motor cortex activities: a 3T fMRI study. Am J Chin Med 33: 573-578 (2005) https://doi.org/10.1142/S0192415X0500317X
  4. Yoo SS, Teh EK, Blinder RA, Jolesz FA: Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. Neuroimage 22:932-940 (2004) https://doi.org/10.1016/j.neuroimage.2004.02.017
  5. Li G, Huang L, Cheung RT, et al: Cortical activations upon stimulation of the sensorimotor-implicated acupoints. Magn Reson Imaging 22:639-644 (2004) https://doi.org/10.1016/j.mri.2004.01.074
  6. Li G, Cheung RT, Ma QY, Yang ES: Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints. Neuroreport 14:669-673 (2003) https://doi.org/10.1097/00001756-200304150-00002
  7. Gareus IK, Lacour M, Schulte AC, Hennig J: Is there a BOLD response of the visual cortex on stimulation of the vision- related acupoint GB 37? J Magn Reson Imaging 15:227-232 (2002) https://doi.org/10.1002/jmri.10059
  8. Wu MT, Hsieh JC, Xiong J, et al: Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preliminary experience. Radiology 212:133-141 (1999) https://doi.org/10.1148/radiology.212.1.r99jl04133
  9. Zhang WT, Jin Z, Luo F, et al: Evidence from brain imaging with fMRI supporting functional specificity of acupoints in humans. Neurosci Lett 354:50-53 (2004) https://doi.org/10.1016/j.neulet.2003.09.080
  10. Ueda Y, Hayashi K, Kuriowa K: The application of fMRI to basic experiments in acupuncture. The effects of stimulus points and content on cerebral activities and responses. IEEE Eng Med Biol Mag 24:47-51 (2005) https://doi.org/10.1109/MEMB.2005.1411348
  11. Yan B, Li K, Xu J, et al: Acupoint-specific fMRI patterns in human brain. Neurosci Lett 383:236-240 (2005) https://doi.org/10.1016/j.neulet.2005.04.021
  12. Cho ZH, Oleson TD, Alimi D, Niemtzow RC: Acupuncture: the search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques. J Altern Complement Med 8:399-401 (2002) https://doi.org/10.1089/107555302760253577
  13. Wu MT, Sheen JM, Chuang KH, et al: Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 16:1028-1037 (2002) https://doi.org/10.1006/nimg.2002.1145
  14. Fang JL, Krings T, Weidemann J, Meister IG, Thron A: Functional MRI in healthy subjects during acupuncture: different effects of needle rotation in real and false acupoints. Neuroradiology 46:359-362 (2004) https://doi.org/10.1007/s00234-003-1125-7
  15. Zhang WT, Jin Z, Cui GH, et al: Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res 982: 168-178 (2003) https://doi.org/10.1016/S0006-8993(03)02983-4
  16. Kong J, Ma L, Gollub RL, et al: A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J Altern Complement Med 8:411-419 (2002) https://doi.org/10.1089/107555302760253603
  17. Hui KK, Liu J, Makris N, et al: Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp 9:13-25 (2000) https://doi.org/10.1002/(SICI)1097-0193(2000)9:1<13::AID-HBM2>3.0.CO;2-F
  18. Napadow V, Makris N, Liu J, et al: Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 24:193-205 (2005) https://doi.org/10.1002/hbm.20081
  19. Liu WC, Feldman SC, Cook DB, et al: fMRI study of acupuncture- induced periaqueductal gray activity in humans. Neuroreport 15:1937-1940 (2004) https://doi.org/10.1097/00001756-200408260-00021
  20. Zhang WT, Jin Z, Huang J, et al: Modulation of cold pain in human brain by electric acupoint stimulation: evidence from fMRI. Neuroreport 14:1591-1596 (2003) https://doi.org/10.1097/00001756-200308260-00010
  21. McGonigle DJ, Howseman AM, Athwal BS, et al: Variability in fMRI: an examination of intersession differences. Neuroimage 11:708-734 (2000) https://doi.org/10.1006/nimg.2000.0562
  22. Waldvogel D, van Gelderen P, Immisch I, Pfeiffer C, Hallett M: The variability of serial fMRI data: correlation between a visual and a motor task. Neuroreport 11:3843-3847 (2000) https://doi.org/10.1097/00001756-200011270-00048
  23. Goldman RI, Wei CY, Philiastides MG, et al: Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. Neuroimage 47:136-147 (2009) https://doi.org/10.1016/j.neuroimage.2009.03.062
  24. Gron G, Bittner D, Schmitz B, et al: Variability in memory performance in aged healthy individuals: an fMRI study. Neurobiol Aging 24:453-462 (2003) https://doi.org/10.1016/S0197-4580(02)00128-8
  25. Cote C, Beauregard M, Girard A, et al: Individual variation in neural correlates of sadness in children: a twin fMRI study. Hum Brain Mapp 28:482-487 (2007) https://doi.org/10.1002/hbm.20400
  26. Xiao YY, Chen XK, Du L, et al: The brain mapping on reinforcement acupuncture stimulation at ST36 (zusanli) evidenced by fMRI. Conf Proc IEEE Eng Med Biol Soc 1:1036-1039 (2006)
  27. MacPherson H, Green G, Nevado A, et al: Brain imaging of acupuncture: comparing superficial with deep needling. Neurosci Lett 434:144-149 (2008) https://doi.org/10.1016/j.neulet.2008.01.058