미생물 기원의 나선형 및 협막구조물에 형성된 침철석과 레피도크로사이트의 결정화작용

Mineralization of Geothite and Lepidocrocite on the Twisted-stalk and Sheathed-filaments from the Microbial Origin

  • 박천영 (조선대학교 공과대학 에너지자원공학과) ;
  • 조상섭 (조선대학교 공과대학 에너지자원공학과)
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Cho, Sang-Seob (Department of Energy and Resource Engineering, Chosun University)
  • 발행 : 2009.12.28

초록

연구 목적은 미생물기원으로 추측되는 나선형구조물과 협막구조물에 형성된 침철석과 레피도크로사이트의 광물화작용, 그리고 철수산화물 중에 함유된 중금속함량의 특성을 해석하고자 하였다. 오염된 지하수와 비오염된 지하수의 Cl과 Br의 함량 그리고 Cl/Br의 비율을 이용하여 본 지하수의 오염 정도를 비교해본 결과 인간 활동에 의하여 오염이 진행된 것으로 나타났다. 황갈색 철수산화물을 구성하는 주성분은 $Fe_2O_3$$SiO_2$로 나타났다. $Fe_2O_3$ 함량은 58.57wt.%에서 75.73 wt.% 범위이고, $SiO_2$ 함량은 5.8 wt.%에서 16.17 wt.% 범위로 나타났다. 황갈색 철수산화물에 고 함량으로 함유된 중금속원소는 Zn(최대 6,160 mg/kg), Pb(최대 377 mg/kg), U(최대 503 mg/kg), Cr(최대 203 mg/kg) Cu(최대 77 mg/kg), V(최대 162 mg/kg) 및 Ni(최대 105 mg/kg) 등이다. 래스상과 엽편상의 결정들 그리고 침상의 결정들이 나선형구조물과 협막구조물에 발달 돤 것이 관찰되었다. 황갈색 철수산화물에 대한 x-선 회절분석에서 침철석, 석고 및 레피도크로사이트가 관찰되었다.

The objectives of this study are to investigate the biomineralization of goethite and lepidocrocite formed on the twisted-stalk and the sheathed-filament structure that is suggest microbe origin, and heavy metal in the yellow Fe-hydroxide. On the ratio of Cl and the Cl/Br ratios that are a pollution and non-pollution of groundwaters, it is indicated that the groundwater in this areas were relatively contaminated by human activity. The composition of the yellow Fe-hydroxide consisted mainly of $Fe_2O_3$ and $SiO_2$. The content of $Fe_2O_3$ ranges from 58.57 wt.% to 75.7 3wt.%, and $SiO_2$ content ranges from 5.8 wt.% to 16.17 wt.%. Heavy metal elements such as Zn(max. 6,160 mg/kg), Pb(max. 377 mg/kg), U(max. 503 mg/kg), Cr(max. 203 mg/kg), Cu(max. 77 mg/kg), V(max. 162 mg/kg), Ni(max. 105 mg/kg) were observed to be rich in those yellow Fe-hydroxide. The lath and platy crystals and needle-shaped crystals were clearly observed on the twisted-stalks and sheathed-filaments structure. The goethite, gypsum, and lepidocrocite were identified in the yellow Fe-hydroxide by x-ray powder diffraction.

키워드

참고문헌

  1. Akai, J., Akai, K., Ito, M., Nakano, S., Maki, Y. and Sasagawa,I. (1999) Biologically induced iron ore at Gunmairon mine, Japan. American Mineralogist, v.84, p.171-182 https://doi.org/10.2138/am-1999-1-219
  2. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. andPenn, R. L. (2000) Aggregation-based crystal growthand microstructure development in natural iron oxyhydroxidebiomineralization products, Science, v. 289,751-754 https://doi.org/10.1126/science.289.5480.751
  3. Brown, D. A., Kamineni, D. C., Sawicki, J. A. and Beveridge,T. J. (1994) Minerals associated with biofilmoccurring on exposed rock in a granitic undergroundresearch laboratory. Applied and EnvironmentalMicrobiology, v.60, p.3182-3191
  4. Cullimore, D. R. (2008) Practial manual of groundwatermicrobiology. CRC Press, 379p
  5. Cullimore, R. (2000) Microbiology of well biofouling.Lewis Publishers, 435p
  6. Davis, S. N., Whittemore, D. O. and Fabryka-Martin, J.(1998) Uses of chloride/bromide ratios in studies ofpotable water. Ground Water, v.36, p.338-350 https://doi.org/10.1111/j.1745-6584.1998.tb01099.x
  7. Duce, R., Winchester, J. W. and Van Nahl, T. W. (1965)Iodine, bromid, and chloride in the Hawaiian marineatmosphere. Jour. Geophys. Reseach, v.70, p.1775-1799 https://doi.org/10.1029/JZ070i008p01775
  8. Eby, G. N. (2004) Principles of environmental geochemistry.TOMSON, 514p
  9. Emerson, D. (2000) Microbial oxidation of Fe(II) andMn(II) at circumneutral pH. In Lovley, D.R.(ed.) Environmentalmicrobe-metal interactions. ASM Press,p.31-52
  10. Hallberg, R. and Ferris, F. G. (2004) Biomineralization byGallionella. Gemicrobiology Journal, v.21, p.325-330 https://doi.org/10.1080/01490450490454001
  11. Houben, G. J. (2003) Iron oxide incrustation in wells. Part1: genesis, mineralogy and geochemistry. AppliedGeochemistry, v.18, p.927-939 https://doi.org/10.1016/S0883-2927(02)00242-1
  12. Ivarson, K. C. and Sojak, M. (1978) Microorganisms andochre deposits in field drains of Ontario. CanadianJournal of Soil Science, v.58, p.1-17 https://doi.org/10.4141/cjss78-001
  13. Kappler, A. and Straub, K.L. (2005) Geomicrobiologicalcycling of iron. In Banfield, J.F., Cervini-Silva, J. andNealson, K.M.(ed.) Molecular geomicrobiology. MineralogicalSociety of America Geochemical Society,p.85-108
  14. Katsoyiannis, I.A. and Zouboulis, A.I. (2004) Biologicaltreatment of Mn(II) and Fe (II) containing groundwater:kinetic considerations and product characterization.Water Research, v.38, p.1922-1932 https://doi.org/10.1016/j.watres.2004.01.014
  15. Kim, J.J., Kim, S.J. and Lee, S.S. (2003) Gallionella Ferrugineain ochreous precipitates from acid mine drinagein Donghae coal mine area, Korea. GeosciencesJournal, v.7, p.289-292 https://doi.org/10.1007/BF02919558
  16. Konhauser, K. O. (1997) Bacterial iron biomineralizationin nature. FEMS Microbiology Reviews, v.20, p.315-326 https://doi.org/10.1111/j.1574-6976.1997.tb00317.x
  17. Konhauser, K. O. (1998) Diversity of bacterial iron mineralization.Earth Science Reviews, v.43, p.91-121 https://doi.org/10.1016/S0012-8252(97)00036-6
  18. Koretsky, C. (2000) The significance of surface complexationreaction in hydrologic systems: a geochemist'perspective. Journal of Hydrology, v.230, p.127-171 https://doi.org/10.1016/S0022-1694(00)00215-8
  19. Kucera, S. and Wolfe, R.S. (1957) A selective enrichmentmethod for Gallionella ferruginea, Journal of Bacteriology,v.74, p.344-348
  20. Mann, H., Tazaki, K., Fyfe, W.S. and Kerrich, R. (1992)Microbial accumulation of iron and manganese in differentaquatic environments: an electron optical study.In Skinner, H.G.W. and Fitzpatrick, R.W.(ed.) Biomineralizationprocesses of iron and manganese-modernand ancient environments-. CATENA SUPPLEMENT21, p.115-131
  21. Milnes, A. R., Fitzaptrick, R.W., Self, P.G., Fordham, A.W.and McClure, S.G. (1992) Natural iron precipitates ina mine retention pond near Jabiru, Northern Territory, Australia. In Skinner, H.G.W. and Fitzpatrick,R.W.(ed.) Biomineralization processes of iron andmanganese-modern and ancient environments-. CATENASUPPLEMENT 21, p.233-261
  22. Park, C. Y. and Cho, S. S. (2009) Gechemical characteristicsof the heavy metal content and the iron-oxidationbacteria for Fe scales in groundwater well.Journal of the Korean Society for Geosystem Engineering,v.46, p.11-27
  23. Park, C. Y. and Lim, S. S. (2007) Geochemistry for andIron-Oxidizing Bacteria Formed in Groundwater Well.Journal of the Korean Society for Geosystem Engineering,v.44, p.392-410
  24. Schwertmann, U. and Fitzpartick, R.W. (1992) Iron mineralsin surface environments. In Skinner, H.G.W. andFitzpatrick, R.W.(ed.) Biomineralization processes ofiron and manganese-modern and ancient environments-.CATENA SUPPLEMENT v.21, p.7-30
  25. Southam, G. (2000) Bacterial surface-mediated mineralformation. In Lovley, D.R.(ed.) Environmental microbemetalinteractions. ASM Press, p.257-276
  26. Tuhela, L., Carson, L. and Tuovinen, O. H. (1997) Biogeochemical transformations of Fe and Mn in oxicgroundwater and well water environments, Journal ofEnvironmental Science and Health, v.32, p.407-426 https://doi.org/10.1080/10934529709376551