부영 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Buyeong Gold-silver Deposit, Republic of Korea

  • 이길재 (한국지질자원연구원 광물자원연구본부) ;
  • 유봉철 (한국지질자원연구원 광물자원연구본부) ;
  • 이종길 ((주)도화종합기술공사 지반공학부) ;
  • 지세정 (한국지질자원연구원 광물자원연구본부) ;
  • 이현구 (충남대학교 지질환경과학과)
  • Lee, Gill-Jae (Korea Institute of Geoscience and Mineral Resources) ;
  • Yoo, Bong-Chul (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong-Kil (Geotechnical department, Dohwa Consulting Engineers Co., LTD.) ;
  • Chi, Se-Jung (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyun-Koo (Department of geology and environmental sciences, Chungnam National University)
  • 발행 : 2009.12.28

초록

부영 금-은광상은 백악기 고성층 내에 발달된 NS단층대의 열극을 충진한 석영맥광상이다. 이들 석영맥의 광화작용은 hypogene 시기와 supergene 시기로 구분된다. Hypogene 시기의 광물은 견운모, 황철석, 녹니석 및 녹염석으로 구성된 열수변질광물과 황철석, 자류철석, 섬아연석, 백철석, 황동석, 방연석 및 갈레노비스무타이트로 구성된 황화광물이 관찰된다. Supergene 시기에는 공작석, 침철석, 휘동석 및 섬아연석 산화물 등이 생성되었다. 유체포유물 자료에 의하면, 광화시기의 균일화온도와 염농도는 각각 $112{\sim}340^{\circ}C$, 0.2~7.9 wt.% NaCl 로서 광화유체가 천수의 혼입에 의한 냉각과 희석이 있었음을 지시한다. 황(3.2~3.9‰) 기원은 주로 화성기원과 일부 모암내의 황에서 유래된 것으로 해석된다. 산소(4.3~6.0‰)와 수소(-60~-64‰) 동위원소값의 자료로 볼 때, 이 광상의 광화유체는 천수 기원의 유체가 주종을 이룬 것으로 보이며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.

The Buyeong gold-silver deposit consists of quartz veins that fill along the NS fault zone within Cretaceous Goseong formation. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, chlorite, epidote and sulfides such as pyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, galena and galenobismutite. Supergene stage is composed of malachite, goethite, chalcocite, and sphalerite oxide. Fluid inclusion data indicate that homogenization temperatures and salinities range from 112 to $340^{\circ}C$ and from 0.2 to 7.9 wt.% NaCl, respectively. Sulfur(3.2~3.9‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source as well as partly host rocks. The calculated oxygen(4.3~6.0‰) and hydrogen(-60~-64‰) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

키워드

참고문헌

  1. Barret, T.J. and Anderson, G.M. (1988) The solubility ofsphalerite and galena in 1-5m NaCl solutions to300oC. Geochim. Cosmochim. Acta., v.52, p.813-820 https://doi.org/10.1016/0016-7037(88)90353-5
  2. Bodnar, R.J. (1983) A method of calculating fluid inclusionvolumes based on vapor bubble diameters and P-V-TXproperties of inclusion fluids. Econ. Geol., v.78,p.535-542 https://doi.org/10.2113/gsecongeo.78.3.535
  3. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation ofmicrothermometric data for $H_{2}O$-NaCl fluid inclusionIn De Vivo, B., and Frezzotti, M.L., (eds.) Fluid inclusionsin minerals: Method and applications. ShortCourse International Mineralogical Assoc., p.117-130
  4. Chang, T.W., Hwang, S.K., Lee, D.W., Oh, I.S., Kim, H.C.and Kim, E.H. (1983) Explanatory text of the geologicalmap of Chung Mu sheet. Korea Institute ofEnergy and Resources
  5. Chi, J.M., Kim, H.S., Oh, I.S. and Kim, H.C. (1983)Explanatory text of the geological map of Samcheonposheet. Korea Institute of Energy and Resources
  6. Chi, S.J. (1984) Reflectance and microhardness characteristicsof sulfide minerals from the Sambong coppermine. Korean Institute of Mining Geology Journal,v.17, p.115-139
  7. Choi, S.G., Pak, S.J., Kim, C.S., Ryu, I.C. and Wee, S.M.(2006) The origin and evolution of mineralizing fluidsin the Cretaceous Gyeongsang basin, SoutheasternKorea. J. Geochem. Explor., v.89, p.61-64 https://doi.org/10.1016/j.gexplo.2005.12.009
  8. Choi, S.G., Wee, S.M. and Ryu, I.C. (2005) Tectonics,shallow magmatism, and mineralization in the Southernpart of the Korean peninsula. Korea Science andEngineering foundation, 100p
  9. Choi, S.H., So, C.S. and Lee, J.H. (1993) Mineralogical,stable isotope and fluid inclusion studies of copperbearinghydrothermal vein deposits in Goseong miningdistrict, Gyeongsang basin, Korea. Transactions ofthe Institution of Mining and Metallurgy, v.102, p.123-133
  10. Cook, D.R., Heithersay, P.S., Wolfe, R. and Calderon, A.L.(1998) Australian and western Pacific porphyry Cu-Audeposits. J. Australian Geol. Geophy., v.17, p.97-104
  11. Gammons, C.H. and Williams-Jones, A.E. (1995) The solubilityof Au−-Ag alloy+AgCl in HCl/NaCl solutions at300oC. New data on the stability of Au(I) chloridecomplexes in hydrothermal fluids. Geochim. Cosmochim.Acta., v.59, p.3453-3468 https://doi.org/10.1016/0016-7037(95)00234-Q
  12. Hall, D.L. Sterner, S.M. and Bodnar, R.J. (1988) Freezingpoint depression of NaCl-KCl-H2O solutions. Econ.Geol., v.83, p.197-202 https://doi.org/10.2113/gsecongeo.83.1.197
  13. Hass, J.L. (1971) The effect of salinity on the maximumthermal gradient of a hydrothermal system at hydrostaticpressure. Econ. Geol., v.66, p.940-946 https://doi.org/10.2113/gsecongeo.66.6.940
  14. Jeong, G.S. (1973) Characteristics and geophysical explorationmethods of Gyeongnam copper depsotis. J.Korean Inst. Mining Geol., v.6, p.171-193
  15. Jeong, K.C. (1970) Geophysical exploration and drillingresults of Samsan Jeil copper mine. J. Korean Inst.Mining Geol., v.3, p.223-229
  16. Jwa, Y.J. (1998) Petrology of the igneous rocks in theGoseong area, Gyeongsang basin: II. Trace elementgeochemistry and Rb-Sr radiometric age. Econ. Environ.Geol., v.31, p.473-483
  17. KIGAM (2008) Resource information (monthly) (http://rik.kigam.re.kr)
  18. Kim, C.J. (1984) Mineral paragenesis and fluid inclusionsof Geoje copper ore deposits. J. Korean Inst. MiningGeol., v.17, p.245-258
  19. Kim, J.D. (1987) Geology and ore deposits of the Donghaemine, Goseong area. J. Korean Inst. Mining Geol.,v.20, p.213-221
  20. Kim, K.H. and Nakai, N. (1988) Isotopic compositions ofprecipitations and groundwaters in South Korea. J.Geol. Soc. Korea, v.24, p.37-46
  21. Kim, S.U. (1973) A regional study for developments ofKyeongnam copper metallogenic province. J. KoreanInst. Mining Geol., v.6, p.133-170
  22. Koh, S.M., Ryoo, C.R., and Song, M.S. (2003) Mineralizationcharacteristics and structural controls ofhydrothermal deposits in the Gyeongsang basin,South Korea. Res. Geol., v.53, p.175-192 https://doi.org/10.1111/j.1751-3928.2003.tb00168.x
  23. Korea Mining Promotion Corporation (1968) Ore depositof Korea. 259p
  24. Korea Mining Promotion Corporation (1977) Drilling surveyreport of ore deposits. p.234-236
  25. Korea Mining Promotion Corporation (1979) Drilling surveyreport of ore deposits. p.184-185
  26. Korea Mining Promotion Corporation (1981) Ore depositof Korea. p.98-99
  27. Korea Mining Promotion Corporation (1982) Drilling surveyreport of ore deposits. p.189-191.
  28. Korea Mining Promotion Corporation (1987) Ore depositof Korea. p.930-931
  29. Lee, J.H. (1992) Hydrothermal copper mineralization inthe Goseong district, Korea. Unpub. Ph.D. thesis.Korea Univ., 117p
  30. Lee, S.Y., Choi, S.G., So, C.S., Ryu, I.C., Wee, S.M. andHeo, C.H. (2003) Base-metal mineralization in theCretaceous Gyeongsang basin and its genetic implications,Korea: the Haman-Gunbug-Goseong(-Changwon)and the Euiseong metallogenic provinces. Econ.Environ. Geol., v.36, p.257-268
  31. Linke, W.F. (1965) Solubilities of inorganic and metalorganiccompounds. 4th ed., Washington, D.C., Am.Chem. Soc., 1914p
  32. Luzhnaya, N.P. and Vereshtchetina, I.P. (1946) Sodium,calcium, magnesium chlorides in aqueous solutions at−-57 to +25${^{\circ}C}$(polythermal solubility). Zhurnl. Prikl.Khimii., v.19, p.723-733 Sodium, calcium, magnesium chlorides in aqueous solutions at −57 to +25oC(polythermal solubility)
  33. Marignac, C. (1989) Sphalerite stars in chalcopyrite: Arethey always the result of an unmixing process?.Miner. Depos., v.24, p.176-182 https://doi.org/10.1007/BF00206440
  34. Matsuhisa, Y., Goldsmith, R. and Clayton, R.N. (1979)Oxygen isotope fractionation in the system quartzalbite-anorthite-water. Geochim. Cosmochim. Acta.,v.43, p.1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  35. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur andcarbon. In Barnes, H. L., (ed.) Geochemistry ofHydrothermal Ore Deposits. New York, John Wileyand Sons, p.509-567
  36. Ohmoto, H. (1986) Stable isotope geochemistry of oredeposits. Reviews in Min., v.16, p.491-560
  37. Paik, I.S., Kang, H.C., Huh, M. and Yang, S.Y. (2006) Geoseong formation (Yucheon group) in the southern partof the Gyeongsang basin, Korea: occurrences andstratigraphy. J. Geol. Soc. Korea, v.42, p.483-505
  38. Park, E.Y. (2000) Mineral, fluid inclusion and stable isotopestudies of the Jangan Cu deposit in the Geojaearea. unpub. Ms. Thesis. Chungnam National Univ.,63p
  39. Park, H.I. (1983) Ore and fluid inclusions of theTongyeong gold-silver deposits. J. Korean Inst. MiningGeol., v.16, p.245-251
  40. Park, H.I., Choi, S.W., Chang, H.W. and Lee, M. S. (1983)Genesis of the Copper deposits in Goseong district,Gyeongnam area. J. Korean Inst. Mining Geol., v.16,p.135-147
  41. Park, T.H. and Jwa, Y.J. (2000) Local variation of magneticsusceptibility of Cretaceous to Tertiary granitoidsin the Gyeongsang basin - magnetite-/illmenite-seriesrevisited. J. Geol. Soc. Korea, v.36, p.487-498
  42. Shelton, K.L., So, C.S., Haeussler, G.T., Chi, S.J. and Lee,K.Y. (1990) Geochemical studies of the Tongyounggold-silver deposits, Republic of Korea; Evidence ofmeteoric water dominance in a Te-bearing epithermalsystem. Econ. Geol., v.85, p.1114-1132 https://doi.org/10.2113/gsecongeo.85.6.1114
  43. Sheppard, S.M.F. (1986) Characterization and isotopevariations in natural waters. Reviews in Min., v.16,p.165-183
  44. Sterner, S.M., Hall, D.L. and Bodnar, R.J. (1988) Syntheticfluid inclusions. V. conditions. Geochim. Cosmochim.Acta., v.52, p.989-1005 https://doi.org/10.1016/0016-7037(88)90254-2
  45. Yoo, B.C., Lee, J.K., Lee, G.J. and Lee, H.K. (2008) Theoptimal resource development for analyzing data ofdeposit types, ore reseves of oversea metal resource.Econ. Environ. Geol., v.41, p.773-795