DOI QR코드

DOI QR Code

Characterization of Chl a Fluorescence of Hydrophytes under Cadmium Stress

카드뮴 스트레스에 대한 수생식물 5종의 엽록소형광 반응

  • Oh, Soon-Ja (Department of Biology & Research Institute for Basic Sciences, Jeju National University) ;
  • Zhin, Kook-Lhim (Department of Biology & Research Institute for Basic Sciences, Jeju National University) ;
  • Koh, Seok-Chan (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
  • 오순자 (제주대학교 생물학과/기초과학연구소) ;
  • 진국림 (제주대학교 생물학과/기초과학연구소) ;
  • 고석찬 (제주대학교 생물학과/기초과학연구소)
  • Published : 2009.12.31

Abstract

The effects of $Cd^{2+}$ ions on the Chl a fluorescence of 5 hydrophytes (e.g. Lemna, Salvinia, Ricciocarp, Nymph, Typha plants) were investigated in order to select $Cd^{2+}$-sensitive plant species and to get informations on physiological responses of plants to $Cd^{2+}$ stress. Lemna plants were most sensitive to cadmium stress, while Nymph plants were tolerant. However, in all $Cd^{2+}$-treated plants, Fv/Fm, the maximum photochemical efficiency of PS II, decreased in proportion to the increase of $Cd^{2+}$ concentration and treatment time. The Chl a fluorescence transient O-J-I-P was also considerably affected by $Cd^{2+}$ ions; the fluorescence yield decreased consid- erably in steps J, I and P in $Cd^{2+}$ treated plants, although it followed a typical polyphasic rise in non-treated plants. In Lemna plants, the functional parameters, ABS/CS, TRo/CS와 ETo/CS and RC/CS, decreased in proportion to the increase of $Cd^{2+}$ concentration, while N, Mo and Kn increased. The structural parameters, ${\Phi}po$, ${\Phi}po$/($1-{\Phi}po$), Plabs, SFlabs, Kp and RC/ABS, also decreased according to the increase of $Cd^{2+}$ concentration. Consequently, Lemna plants will be useful as a experimental model system to investigate responses of plants. And several functional or structural parameters could be applied to determine quantitatively the physiological states of plants under stresses.

Keywords

References

  1. Nriagu J. O. and J. M. Pacyna, 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134-139 https://doi.org/10.1038/333134a0
  2. Maleva M. G., G. F. Nekrasova and V. S. Bezel, 2004, The response of hydrophytes to environmental pollution with heavy Metals, Russian J. Ecol., 35(4), 230-235 https://doi.org/10.1023/B:RUSE.0000033791.94837.9e
  3. Benavides M. P., S. M. Gallego and M. L. Tomaro, 2005, Cadmium toxicity in plants, Braz. J. Plant Physiol., 17(1), 21-34 https://doi.org/10.1590/S1677-04202005000100003
  4. John R., P. Ahmad, K. Gadgil and S. Sharma, 2009, Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L., Int. J. Plant Production, 3(3), 65-76
  5. Kahle H., 1993, Response of roots of trees to heavy metals, Environ. Exp. Bot., 33(1), 99-119 https://doi.org/10.1016/0098-8472(93)90059-O
  6. Prasad M. N. V., 1995, Cadmium toxity and tolerance in vascular plants, Environ. Exp. Bot., 35(4), 525-545 https://doi.org/10.1016/0098-8472(95)00024-0
  7. Vogeli-Lange R. and G. J. Wagner, 1990, Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, Plant Physiol., 92(4), 1086-1093 https://doi.org/10.1104/pp.92.4.1086
  8. Baryla A., P. Carrier, F. Franck, C. Coulomb, C. Sahut and M. Havaux, 2001, Leaf chlorosis in oilseed repe plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696-709 https://doi.org/10.1007/s004250000439
  9. Sandalio L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. del Rio, 2001, Cadmium induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 52, 2115-2126
  10. Baker N. R., 1991, A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis, Physiol. Plant., 81, 563-570 https://doi.org/10.1111/j.1399-3054.1991.tb05101.x
  11. Lang M., H. K. Lichtenthaler, M. Sowinska, F. Heisel and J. A. Miehé, 1996, Fluorescence imaging of water and temperature stress in plant leaves, J. Plant Physiol., 148, 613-621 https://doi.org/10.1016/S0176-1617(96)80082-4
  12. Gilmore A. M. and Govindjee, 1999, How higher plants respond to excess light: Energy dissipation in photosystem II, In: Singhal G. S., Renger G., Irrgang K. D., Govindjee (ed.), Concepts in photobiology: Photosynthesis and Photo-morphogenesis, New Delhi, India, 513-548
  13. Osmond C. B., D. Kramer and U. Luttge, 1999, Reversible, water stress induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses, Plant Biol., 1, 618-624 https://doi.org/10.1111/j.1438-8677.1999.tb00272.x
  14. 오순자, 고석찬, 2004, 겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구, 한국환경생물학회지, 22(1), 233-241
  15. Guidi L., S. Mori, E. Degl´Innocenti and S. Pecchia, 2007, Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence, Plant Physiol. Biochem., 45, 851-857 https://doi.org/10.1016/j.plaphy.2007.07.001
  16. Chollet R., 1993, Screening inhibitors (antimetabolites) of the biosynthesis or function of amino acids or vitamins with Lemna assay, In Boger P., Sandmann G. (ed.), Target assay of modern herbicides and related phytotoxicity compounds, Lewis, London, UK, 143-149
  17. Nedbal L., J. Soukupova, J. Whitmarsh and M. Trtilek, 2000, Posthavest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38(4), 571-579 https://doi.org/10.1023/A:1012413524395
  18. Strasser B. J. and R. J. Strasser, 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test. In Mathis P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980
  19. Srivastava A., B. Guisse, H. Greppin and R. J. Strasser, 1997, Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochem. Biophys. Acta., 1320, 95-106 https://doi.org/10.1016/S0005-2728(97)00017-0
  20. Nilsson H. E., 1995, Remote sensing and image analysis in plant pathology, Ann. Rev. Phytopathol., 33, 489-527 https://doi.org/10.1146/annurev.py.33.090195.002421
  21. Peuelas J. and I. Filella, 1998, Visible and near-infrared reflectance techniques for diagnosing plant physiological status, Trends Plant Sci., 3, 151-156 https://doi.org/10.1016/S1360-1385(98)01213-8
  22. Lichtenthaler H. K. and J. A. Mieh, 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316-320 https://doi.org/10.1016/S1360-1385(97)89954-2
  23. Krause G. H. and E. Weiss, 1991, Chlorophyll fluorescence and photosynthesis: The basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349 https://doi.org/10.1146/annurev.pp.42.060191.001525
  24. Bolhar-Nordenkampf H. R., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber and E. G. Lechner, 1989, Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation, Functional Ecol., 3(4), 497-514 https://doi.org/10.2307/2389624
  25. Strasser R. J. and Govindjee, 1992, The Fo and the O-J-I-P fluorescence rise in higher plants and algae, In Argyroudi-Akoyunoglou J. H. (ed.), Regulation of Chloroplast Biogenesis, Plenum Press, New York, 423-426
  26. Stirbet A., Govindjee, B. J. Strasser and R. J. Strasser, 1998, Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation, J. Theor. Biol., 193, 131-151 https://doi.org/10.1006/jtbi.1998.0692

Cited by

  1. Chl a Fluorescence Characterization and Biomarker Selection from Ricciocarpos natans under Cadmium Stress vol.22, pp.11, 2013, https://doi.org/10.5322/JESI.2013.22.11.1403
  2. Chlorophyll a Fluorescence Response to Mercury Stress in the Freshwater Microalga Chlorella Vulgaris vol.22, pp.6, 2013, https://doi.org/10.5322/JESI.2013.22.6.705