Phytolith Analysis of Sediments in the Lake Gyeongpo, Gangneung, Korea and Climatic Change in the Holocene

경포호의 식물규소체(phytolith) 분석과 Holocene 기후변화

  • Yoon, Soon-Ock (Dept. of Geography and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Hyo-Seon (Dept. of Geography, Kyung Hee University) ;
  • Hwang, Sang-Ill (Dept. of Geography, Kyungpook National University)
  • 윤순옥 (경희대학교 지리학과 및 기초과학연구소) ;
  • 김효선 (경희대학교 지리학과) ;
  • 황상일 (경희대학교 지리학과)
  • Published : 2009.12.31

Abstract

Phytolith analysis was made on a 660cm core from Lake Gyeongpo in the East Sea of Korean Peninsula to clarify the environmental change including climate and agricultural characteristics during the Holocene. From the results of phytolith analysis, six phytoliths assemblage zone(PAZ) were recognized from the base to the surface. PAZ I around 5,000 yr BP suggests the transition from the warm and dry to the cool and wet climatic conditions. The climate of PAZ II(ca. 4,000-2,000 BP) was kept on warm, but repeated between dry and wet conditions. PAZ III(2,000~1,000 yr BP) suggests the expansion of agricultural activities under the warm and humid climatic conditions due to the significant phytoliths production of Paniceae and Oryza sativa. While PAZ IV(1,000~500 yr BP) indicates very cool and dry conditions, PAZ V and IV suggest the warm-dry and cool-humid climatic conditions, respectively. Similar to the results of pollen analysis in the lake, the agricultural activities were recognized by PAZ III around 2,000 yr BP from the results of phytolith analysis, and the rice cultivations such as Oryza sativa have been expanded since 2,000 yr BP or later.

한국 동해안 경포호에서 보링한 두께 660cm의 퇴적물로 식물규소체(phytolith) 분석을 행하여 Holocene 기후 및 환경 변화와 농경의 특성을 밝혔다. 분석 결과 기저부에서 지표층까지 여섯 개의 식물규소체 분대가 구분되었다. PAZI은 약 5,000년 BP를 전후하여 온난, 건조하였고 이후 냉량, 습윤하였다. PAZII(4,000-2,000년 BP 경)는 온난하였으나, 건-습 환경이 교대로 반복하였다. PAZIII(2,000-1,000년 BP 경) 시기는 기장족과 재배벼를 포함하는 규소체가 다량 산출하여 온난, 습윤한 기후환경에서 농경이 확대되었음을 지시한다. PAZIV(1,000-500년 BP 경) 시기에는 냉량, 건조하였고 이후 PAZV와 IV시기에는 짧은 시기동안 다시 온난, 건조 및 냉량, 습윤한 환경으로 변화하였다. 경포호의 화분분석 결과와 유사하게 식물규소체 분석 결과에서도 농경은 PAZIII시기를 중심으로 약 2,000년 BP 경 확대되었으나 재배벼(Oryza sativa) 중심의 벼농사는 다소 후기에 확대되었다.

Keywords

References

  1. 곽종철.후지와라 히로시.우다 테츠로.야나기사와 카즈오, 1995, '신석기시대 토기태토에서 검출된 벼의 plant-opal,' 한국고고학보, 32, 149-162
  2. 오용자, 2005, '한국산 사초과(Cyperaceae) 식물의 규소체(silica body) 형태에 의한 분류,' 한국식물분류학회지, 35(4), 313-335
  3. 원주지방환경청, 2008, 동해안 석호보전 및 복원을 위한 생태계 정밀조사 및 관리방안 연구, 781
  4. 윤순옥.문영롱.황상일, 2008a, '경포호 홀로세 퇴적층에 대한 화분분석과 환경변화,' 지질학회지, 44(5), 781-704
  5. 윤순옥.조화룡, 1996, '제4기 후기 영양분지의 자연환경 변화,' 대한지리학회지, 31(3), 447-468
  6. 윤순옥.황상일.박충선.김효선.문영롱, 2008b, '한국 중부 동해안 석호의 20세기 경관 변화,' 대한지리학회지, 43(4), 449-465
  7. 이경아, 1999, '식물유체 복원법의 발달과 식물규소체 분석의 고고학적 의의,' 한중고고학연구, 6, 21-47
  8. 이융조.김정희, 1998, '한국 선사시대 벼농사의 새로운 해석 -식물 규소체 분석자료를 중심으로-,' 선사와 고대, 11, 11-45
  9. 이융조.김정희, 2001, 충주 조동리 선사유적I(조동리유적 출토 토기 바탕흙의 식물규소체 분석), 충북대학교박물관, 424-428
  10. 이지영, 2008, 부여군 규암면 나복리 통실 곡저평야의 환경 복원 - Plant opal 분석을 중심으로, 경희대학교 석사학위논문
  11. 임효재.스즈키 미츠오, 2000,' 김포 니탄층 유적과 그 당시의 고환경연구,' 한중고고학연구, 7, 7-39
  12. 정철환.윤호일.이승현, 2004, '제주도 서귀포지역 제4기 퇴적층에서 산출된 포자, 화분의 고기후적 의미,' 한국지구과학회지, 25(5), 377-385
  13. 황상일.윤순옥, 2008, '한국 중부 동해안 석호 및 주변 유역의 지형특성과 하구부 퇴적환경,' 한국지형학회지, 15(3), 17-33
  14. 황성수, 1992, 벼속(Oryza) 식물규소체의 형태와 그 분류학적 의의, 전북대학교 박사학위논문
  15. 近藤鍊三.佐隆, 1986, '植物硅酸, その特徵と用,' 第四紀硏究, 25, 31-63
  16. 塚田松雄.金遵敏.任良宰.洪渟喆.安田喜憲, 1977, 束草における植生變遷史, 韓國環境變遷史 I, 第四紀學會講演要旨集, 6, 23-35
  17. 塚田喜憲, 1980, 環境考古學事始; 東京, 日本放送出版協會
  18. 安田喜憲.塚田松雄.金遵敏.李相泰, 1980, 韓國における環境變遷史と農耕の起源, 文部省學術調査報告, 1-19
  19. 佐隆.近藤三, 1974, '北海道の埋火山灰土腐植層中の植物珪酸について, 畜産大術硏究報告第I部,' 8(3), 465-483
  20. Alexandre, A., Meunier, J. D., Lezine, A. M., Vincens, A., and Schwartz, D., 1997, Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa, Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 213-229 https://doi.org/10.1016/S0031-0182(97)00089-8
  21. Barboni, D., Bonnefille, R., Alexandre, A., and Meunier, J. D., 1999, Phytoliths as palaeoenvironmental indicators, West Side Middle Awash Valley, Ethiopia, Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 87-100 https://doi.org/10.1016/S0031-0182(99)00045-0
  22. Bjorck, S., Ollsson, S., Ellis-Evans, C., Håkansson, H., Humlum, O., and Juan Manuel de L., 1996, Late Holocene palaeoclimatic records from lake sediments on James Rose Island, Antarctica, Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 195-220 https://doi.org/10.1016/0031-0182(95)00086-0
  23. Bremond, L., Alexandre, A., Peyron, O., and Guiot, J., 2005, Grass water stress estimated from phytoliths in west Africa, Journal of Biogeography, 32, 311-327 https://doi.org/10.1111/j.1365-2699.2004.01162.x
  24. Brown, D. A., 1984, Prospects and limits of a phytolith key for grasses in the central United States, Journal of Archaeological Sciences, 11, 345-368 https://doi.org/10.1016/0305-4403(84)90016-5
  25. Carter, J. A., 2002, Phytolith analysis and paleoenvironmental reconstruction from Lake Poukawa Core, Hawkes Bay, New Zealand, Global and Planetary change, 33, 257-267 https://doi.org/10.1016/S0921-8181(02)00081-4
  26. Chang, C. H. and Kim, C. H., 1982, Late-Quaternary vegetation in the lake of Korea, Korea Journal of Botany, 25(1), 37-53
  27. Delhon, C., Alexandre, A., Berger, J. F., Thiebault, S., Brochier, J. L., and Meunier, J. D., 2003, Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation, Quaternary Research, 59(1), 48-60 https://doi.org/10.1016/S0033-5894(02)00013-3
  28. Diester-Hass, L., Sehrader, H. J., and Thiede, J., 1973, Sedimentological and paleoclimatological investigation of two pelagic ooze cores off Cape Barbas, North-West Africa, Meteor Forschungsergebnisse, 16, 19-66
  29. Fredlund, G. G. and Tieszen, L. L., 1997, Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska, Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 199-211 https://doi.org/10.1016/S0031-0182(97)00040-0
  30. Fujiki, T. and Yasuda, Y., 2004, Vegetation history during the Holocene from Lake Hyangho, northeastern Korea, Quaternary International, 123-125, 63-69 https://doi.org/10.1016/j.quaint.2004.02.009
  31. Ghosh, R., Gupta, S., Bera, S., Jiang, H., Li, X., and Li, C. S., 2008, Ovi-caprid dung as an indicator of paleovegetation and paleoclimate in northwestern China, Quaternary Research, 70(2), 149-157 https://doi.org/10.1016/j.yqres.2008.02.007
  32. Gu, Y., Pearsall, D. M., Xie, S., and Yu, J., 2008, Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from phytolith and charcoal records from Holocene sediments, Journal of Biogeography, 35(2), 325-341 https://doi.org/10.1111/j.1365-2699.2007.01763.x
  33. Lu, H. Y. and Liu, K. B., 2003, Morphological variations of lobate phytoliths from grasses in China and the southeastern USA, Diversity and Distributions, 9(1), 73-87 https://doi.org/10.1046/j.1472-4642.2003.00166.x
  34. Madella, M., Alexandre, A., and Ball, T., 2005, International code for phytolith nomenclature 1.0, Annals of Botany, 96, 253-260 https://doi.org/10.1093/aob/mci172
  35. Mulholland, S. C. and Rapp, G. Jr., 1992, A morphological classification of grass silicabodies. Phytolith systematics: emerging issues, in G. Rapp, Jr and S.C. Mulholland(eds.), pp.65-90. Plenum Press, New York
  36. Pearsall, D. M., 2000, Palaeoethnobotany: a handbook of procedures, 2nd Edition, Academic Press, San Diego
  37. Piperno, D. R., 1988, Phytolith analysis: An Archaeological and Geological Perspective, Academic Press, New York, NY
  38. Piperno, D. R. and Pearsall, D. M., 1998, The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification, Annals of the Smithsonian Institution, 85, 1-40
  39. Rovner, T., 1971, Potential of opal phytoliths for use in palaeoecological reconstruction, Quaternary Research, 1, 343-359 https://doi.org/10.1016/0033-5894(71)90070-6
  40. Tieszen, L. L., Senyimba, M. M., Imbamba, S. K., and Troughton, J. H., 1979, The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya, Oecologia, 37, 337-350 https://doi.org/10.1007/BF00347910
  41. Twiss, P. C., Suess, E., and Smith, R. M., 1969, Morphological classification of grass phytoliths, Soil Science Society of America Journal, 33, 109-115 https://doi.org/10.2136/sssaj1969.03615995003300010030x
  42. Twiss, P. C., 1987, Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. in Johnson, W. C.(ed.), Quaternary Environment of Kansas, Kansas Geological Survey Guidebook Series, 5, 179-188
  43. Twiss, P. C., 1992, Predicted world distibution of C3 and C4 grass phytoliths. in Rapp, Jr. G. and Mullholland, S. C.(eds.), Phytolith systematics: emerging issues, Plenum Press, New York, 113-128
  44. Wooller, M. J., 2002, Fossil grass cuticles from lacustrine sediments: a review of methods applicable to the analysis of tropical African lake cores, The Holocene, 12(1), 97-105 https://doi.org/10.1191/0959683602hl524rr
  45. Zhang, Y., Zhang, M., and Song, J., 2003, Development of ancestors' cultivation revealed in phytolith assemblages from Guangfulin relics, Chinese Science Bulletin, 48(3), 287-290 https://doi.org/10.1007/BF03183300