Growth and Fruit Characteristics of Aneuploid Apple Obtained from Crosses between Diploid and Triploid

이배체와 삼배체를 교배하여 얻은 이수체의 생장과 과일 특성

  • Published : 2009.12.31

Abstract

This study was conducted to observe some characteristics of aneuploid trees obtained from the crosses between diploid and triploid in the first experiment. The results showed that the difference among the percentage of aneuploid's pollen grain germination was large, and all of them were lower than that of diploid 'Hongro' (82.4%). The average weight and size of each aneuploid's fruit was far lighter and smaller than that of diploid 'Hongro'. According to the width and length, all of the fruits shape was flat or short-globose conical shape except for JF3942. Almost all the aneuploid had higher sugar content than 'Hongro', nearly half of aneuploid fruits were firmer than that of diploid 'Hongro'. As for the acid contents of aneuploid fruits, the results were greatly different from those of previous studies on diploid apples, in present study the citric acid and tartaric acid contents were more than the malic acid which are dominant acid in most cultivars of apples. Both the length and width of aneuploid tree were shorter than that of diploid 'Hongro'. Most aneuploid trees' height was longer than width, but there were 4 exceptions. The size of leaves was smaller than that of diploid 'Hongro' according to the length and width of leaves measured. In all, aneuploid's vegetative growth is not as vigorous as diploid.

본 연구는 이전에 이배체와 삼배체를 교배하여 얻은 이수체 사과 나무의 생장과 과실 특성을 알아보고자 수행하였다. 이수체 사과나무의 화분발아율, 영양생장, 과실의 특징을 조사하였다. 그 결과, 이수체 사과 나무 간의 화분발아율의 차이가 크고, 모든 이수체 사과 나무의 화분 발아율이 이배체 '홍로' (82.4%) 보다 낮은 것으로 나타났다. 이수체 사과 나무 과실의 평균 크기와 중량은 이배체 '홍로'보다 작고 가벼운 것으로 나타났다. 또한 이수체 사과 나무 과실의 길이와 너비에 의해 이수체 JF3942빼고 다른 이수체 과실의 외형이 조금 납작했다. 거의 모든 이수체 사과 나무 과일의 당 함량은 이배체 '홍로' 보다 높았다. 본 실험에서 얻은 이수체 사과의 산 함량은 이전에 대부분의 연구자의 이배체 사과 결과와 완전히 달랐다. 이수체 사과의 시트르산하고 타르타르산 함량은 사과산 함량보다 더 높은 것으로 나타났다. 이수체 사과 나무의 수고와 폭은 이배체 '홍로'보다 짧았다. 대부분 이수체 사과 나무의 수고는 폭보다 길지만 네 나무는 반대로 나타났다. 잎의 길이와 너비에 의해 이수체 사과 나무 잎의 크기가 이배체 '홍로'보다 작았다. 이수체 사과 나무는 이배체보다 잘 자라지 않는 것으로 나타났다.

Keywords

References

  1. Adams, J. 1916. On the germination of the pollen grains of apple and other fruit trees. Botanical Gazette. 61(2):131-147 https://doi.org/10.1086/331740
  2. Autio, R.W. and F.W. Southwick.1986.The effects of rootstock and root-interstem combination on the growth, productivity, and anchorage of a spur and standard strain Delicious apple tree. Fruit Var. J. 40:128-133
  3. Awad, M.A., A.D. Jager, M. Dekker, and W.M.F. Jongen. 2001. Formation of flavonoids and chlorogenic acid in apples as affected by crop load. Scientia Horticulturae. 91:227-237 https://doi.org/10.1016/S0304-4238(01)00266-7
  4. Beaumont, J.H. and L.J. Knight. 1922. Apple pollen germination studies. Proc. Amer. Soc. Hort. Sci. 19:151-163
  5. Brown, A.G. 1960. The inheritance of shape, size and season in progenies of the cultivated apple. Euphytica 9:327-337 https://doi.org/10.1007/BF00029485
  6. Calzoni, G.L., A. Speranza, and N.Bagni.1979. In vitro germination of apple pollens. Scientia Horticulturae. 10:49-55 https://doi.org/10.1016/0304-4238(79)90068-2
  7. Campo, G.D., I. Berregi, N. Iturriza, and J.I. Santos. 2006a. Ripeningand changes in chemical composition of seven cider apple varieties. Food Sci Tech Int. 12:477-487 https://doi.org/10.1177/1082013206073009
  8. Campo, G.D., I. Berregi, R. Caracena, and J.I. Santos. 2006b. Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy. Analytica Chimica Acta. 556:462-468 https://doi.org/10.1016/j.aca.2005.09.039
  9. Chun, O.K., D.O. Kim, N. Smith, D. Schroeder, J.T. Han, and C.Y. Lee. 2005. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 85:1715-1724 https://doi.org/10.1002/jsfa.2176
  10. Crane, M.B. and W.K.C. Lawrenece.1929. Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J. Pom. Hort. Sci. 7:276-301
  11. Crane, M.B. and W.K.C. Lawrenece. 1930. Fertility and vigor of apples in relation to chromosome number. J. Genet. 22:153-162 https://doi.org/10.1007/BF02983844
  12. Crane, M.B. and W.K.C. Lawrenece.1933. Genetical studies in cultivated apples. Journal of Genetics. 28:265-296 https://doi.org/10.1007/BF02981775
  13. Darlington, C.D. and A.A. Moffett.1930.Primay and secondary chromosome balance in Pyrus. Jo. Genet. 22:129-151 https://doi.org/10.1007/BF02983843
  14. Drake, S.R. and T.A. Eisele. 1999. Carbohydrate and acid contents of gala apples and bartlett pears from regular andcontrolled atmosphere storage. Journal of Agricultural and Food Chemistry 47: 3181?3184 https://doi.org/10.1021/jf981228x
  15. Drogoudi, P.D., Z. Michailidis, and G. Pantelidis. 2008. Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Scientia Horticulturae 115:149-153 https://doi.org/10.1016/j.scienta.2007.08.010
  16. Eccher, T.1986. Russeting and shape of 'Golden Delicious' apples as related to endogenous GA content of fruitlets. Acta Horticulture. 179:767-770
  17. Hagen, S.F., G.I.A. Bore, G.B. Bengtsson, W. Bilger, A. Berge, K. Haffner, and K.A. Solhaug. 2007. Phenolic contents and others health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol. Technol. 45:1-10 https://doi.org/10.1016/j.postharvbio.2007.02.002
  18. Hall, S.R. 1931. The problem of unfruitfulness in the cultivated apple. The American Naturalist. 65(701): 512-530 https://doi.org/10.1086/280397
  19. Hulme, A.C. and M.J.C. Rhodes.1971. Pome fruit. In: Hulme, A.C. (Ed.), The Biochemistry of fruits and their products.Academic press, London. 333-373
  20. Jaroslav, T. 1962. Free amino-Acids in apple pollen from the point of view of its fertility. Biologia Plantarum. 5(2):154-160 https://doi.org/10.1007/BF02933647
  21. Jonkers, H. 1971. An intenational experiment on juvenility in apple. Euphytica. 20:57-59 https://doi.org/10.1007/BF00146774
  22. Jeuring, H.J., A. Brands, and P.V. Doorninck. 1979. Rapid determination of malic and citric acid in apple juice by high performance liquid chromatography. Z. Lebensm. Unters. Forsch. 168:185-187 https://doi.org/10.1007/BF01123169
  23. Kenis, K., J. Keulemans, and M.W. Davey.2008.Identification and stability of QTLs for fruit quanlity traits in apple. The Genetics and Genomes. 4:647-661 https://doi.org/10.1007/s11295-008-0140-6
  24. King, G.J., C. Maliepaard, J.R. Lynn, F. H. Alston, E.E. Durel, K.M. Evans, B. Griffon, F. Laurens, A.G. Manganaris, E. Schrevens, S. Tartarini, and J. Verhaegh. 2000. Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill). Theor Appl Genet. 100:1074-1084 https://doi.org/10.1007/s001220051389
  25. Larsen, P. and S.M. Tung. 1950. Growth-promoting and growth-retarding substances in pollen from diploid and triploid apple varieties. Botanical Gazette. 111(4):436-447 https://doi.org/10.1086/335614
  26. Link, H. 2000. Significance of flower and fruit thinning on fruit quality. Plant Growth Regulation 31:17-26 https://doi.org/10.1023/A:1006334110068
  27. Lobit, L., M. Genard, B.H. Wu, P. Soing, and R. Habib. 2003. Modelling citrate metabolism in fruits: responses to growth and temperature. Journal of Experimental Botany 54(392):2489-2501 https://doi.org/10.1093/jxb/erg264
  28. McKnezie, D.W. 1971. A survey of shape variation in some New Zealand apples. New Zealand Journal of Agricultural Research 14:491-498 https://doi.org/10.1080/00288233.1971.10427111
  29. Miranda, C., T. Girard, and P.E. Lauri. 2007. Random sample estimates of tree mean for fruit size and colour in apple. Scientia Horticulturae. 112:33-41 https://doi.org/10.1016/j.scienta.2006.12.006
  30. Moffett, A.A. 1931. A preliminary account of chromosome behavior in the pomoideae. J. Pom. Hort. Sci. 9:100-110
  31. Muriel, B. and V. Roscoe. 1933. The chromosomal constitution of certain cultivated apple varieties. Journal of Genetics. 28:157-167 https://doi.org/10.1007/BF02981771
  32. Noe, N. and E. Tommaso. 1996. Golden delicious apple fruit shape and russeting are affected by light conditions. Scientia Horticulturae. 65:209-213 https://doi.org/10.1016/0304-4238(95)00850-0
  33. Ozaki, Y., K. Narikiyo, C. Fujita, and H. Okubo. 2004. Ploidy variation of progenies from intra- and interploidy crosses with regard to trisomic production in asparagus (Asparagus officinalis L.). Sex Plant Reprod. 17:157-164 https://doi.org/10.1007/s00497-004-0229-5
  34. Petkovsek, M.M., F. Stampar, and R. Veberic. 2007. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh). Sci. Hortic. 114:37-44 https://doi.org/10.1016/j.scienta.2007.05.004
  35. Rodbotten, M., B.K. Martinsen, G.I. Borge, H.S. Mortvedt, S.H. Knutsen, P. Lea, and T. Naes. 2009. A cross-cultural study of preference for apple juice with different sugar and acid contents. Food Quanlity and Preference. 27:277-284
  36. Sato, M. and K. Kanbe. 1989. Studies on the seed formation and early growth of seedlings from reciprocal crosses between the triploid apple cultivar 'Mutsu' and diploid cultivars. Bull. Akita. Pre. Coll. Arg. 15:121-128 (In Janpanese with English summary)
  37. Sato, M. 1990. Studies on the stabilization of fruit set of the triploid applecultivar 'Mutsu'. Bull. Akita. Pre. Coll. Agr. 16:1-52
  38. Sato, M. and K. Kanbe. 2007. Comparison of the Establishment efficiency of well-grown seedlings at the early growth stage from reciprocal crosses between diploid and triploid apple cultivars, and the possiblility of these cultivars cross breeding. Hort. Res. (Japan) 6:347-354 https://doi.org/10.2503/hrj.6.347
  39. Sato, M., T. Nyui, H. Takahashi, and H. Kanda. 2007. Comparison of flowering and fruiting of seedlings from reciprocal crosses between diploid and triploid apple cultivars. J. Japan Soc. Hort. Sci. 76:97-102 https://doi.org/10.2503/jjshs.76.97
  40. Shaw, J.K. 1914. A study of variation in apples. Mass. Agricultural Experimental Station Bulletin. 149
  41. Shoemaker, J.S. 1926. Pollen development in the apple, with special reference to chromosome behavior. Botanical Gazette. 81(2):148-174 https://doi.org/10.1086/333583
  42. Sturm, K., M. Hudina, A. Solar, M.V. Marn, and F. Stamper. 2003. Fruit quality of different 'gala' clones. European Journal of Horticultural Science 68(4)
  43. Tackholm, G. 1922. Zytologische studien uber die Gattung Rosa. Acta. Hort. Berg. 7:97-381
  44. Visser, T. 1965. On the inheritance of the juvenile period in apple. Euphytica. 14:125-134 https://doi.org/10.1007/BF00038976
  45. Wand, S.J.E., K.I. Theron, J. Ackerman, and S.J.S. Marais. 2006. Harvest and post-harvest apple fruit quality following applications of kaolin particle film in South African orchards. Scientia Horticulturae. 107: 271-276 https://doi.org/10.1016/j.scienta.2005.11.002
  46. Wertheim, S.J. 1998. Rootstock guide: apple, pear, cherry, European plum. Fruit Research Station. Wilhelminadorp. Netherlands
  47. Whang, H.J., S.S. Kim, and K.R. Yoon. 2000. Analysis of organic acid in Korean apple juice by high performance liquid chromatography. J. Korean Soc. Food. Sci. Nutr. 29:181-187
  48. Wu, J.H., H.Y. Gao, L. Zhao, X.J. Liao, F. Chen, Z.F. Wang, and X.S. Hu. 2007. Chemical compositional characterization of some apple cultivars. Food Chemistry 103:88-93 https://doi.org/10.1016/j.foodchem.2006.07.030
  49. Zhang, C.H. and S.M. Park. 2009. Aneuploid production from crosses with diploid and triploid in apple tree. Hort. Environ. Biotechnol. 50:203-207