Quinone Reductase Inductive Activity and Growth Inhibitory Effect against Hepatoma Cell of Oriental Melon Extract

참외 추출물의 Quinone Reductase 유도활성 및 간암세포 증식 억제효과

  • Kim, Hye-Suk (Department of Horticulture, College of Agriculture and Life Science, Kyungpook National University) ;
  • Ku, Kang-Mo (Department of Horticulture, College of Agriculture and Life Science, Kyungpook National University) ;
  • Suh, Jun-Kyu (Department of Horticulture, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kang, Young-Hwa (Department of Horticulture, College of Agriculture and Life Science, Kyungpook National University)
  • 김혜숙 (경북대학교 농업생명과학대학 원예학과) ;
  • 구강모 (경북대학교 농업생명과학대학 원예학과) ;
  • 서전규 (경북대학교 농업생명과학대학 원예학과) ;
  • 강영화 (경북대학교 농업생명과학대학 원예학과)
  • Published : 2009.12.31

Abstract

This study was performed to elucidate anticancer activities of various parts, such as peel, flesh, placenta, seed, stalk and stem leaf of oriental melon. Chemopreventive and anticancer effects of oriental melon extract were evaluated by detoxifying enzyme, quinone reductase (QR) inductive activity, cytotoxicity and growth inhibitory effect against hepatoma cell. Stalk and stem leaf extracts of oriental melon showed the increment of QR inductive activity with dose-dependent manner and induced quinone reductase 3.9, 1.5-fold at $200{\mu}g/mL$ respectively compared to control. The growth inhibitory effect of oriental melon extract against mouse hepatoma cell (Hepa1c1c7) was investigated by crystal violet (CV) assay. Stalk and stem leaf of oriental melon showed potent growth inhibitory effect. Based on these result, the growth inhibitory effects of stalk, stem leaf at various concentration were examined in detail by MTT assay using human hepatoma cancer cell (HepG2). All of two parts showed growth inhibitory effects and expecially stalk exhibited inhibitory effect of 60.3% at maximum concentration. The above results suggest that stalk of oriental melon has a possibility as a source of natural cancer chemopreventive materials.

본 연구에서는 참외 추출물의 항암활성에 대해 알아보기 위해 참외를 부위별로 나누어 quinone reductase 유도활성과 다양한 간암세포에서의 증식 억제활성을 조사하였다. 참외 꼭지와 참외 줄기 잎 부위에서 농도의존적으로 QR 유도활성이 증가하였고, $200{\mu}g/mL$ 농도에서는 각각 3.9, 1.5배의 유도활성을 나타내었다. 암세포 사멸 활성 측정법을 통한 항암활성 평가 실험에서 마우스 유래의 간암세포인 Hepa1c1c7 세포에 대해서 조사한 결과 꼭지와 줄기 잎 부위에서 높은 암세포 독성을 보였다. 이러한 결과를 기초로 인체유래의 암세포에 대한 항암활성을 평가하기 위해 인체유래 간암 세포주인 HepG2에 대한 세포 증식 억제활성을 농도별로 조사하였다. 꼭지와 줄기 잎 부위 모두 인체유래 간암 세포에 대해 증식 억제효과를 보여주었지만, 특히 꼭지 부위는 최고농도에서 60.3%의 높은 증식 억제효과를 보였다. 그러나 마우스 유래의 간암세포에 대한 활성보다 인체유래 간암세포에 대한 활성이 낮게 나타났다. 참외의 꼭지 추출물에서 QR 유도활성과 항암활성을 확인함으로써 향후 참외 비가식 부위의 기능성 소재로의 이용화에 대한 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Antonio, F., B. D'abrosca, S. Pacifico, C. Mastellone, M. Scognamiglio, and P. Monaco. 2009. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agric. Food Chem. 57:4148-4155 https://doi.org/10.1021/jf900210z
  2. Bae, J.H., S.O. Yu, Y.M. Kim, S.U. Chon, B.W. Kim, and B.G. Heo. 2009. Physiological activity of methanol extracts from Ligularia fischeri and their hyperplasia inhibition ativity of cancer cell. J. Bio-Env. con. 18(1):67-73
  3. Brenner, D.E. 2000. Multiagent chemopreventive agent combinations. J. Cell Biochem. Suppl. 34:121-124 https://doi.org/10.1002/(SICI)1097-4644(2000)77:34+<121::AID-JCB19>3.0.CO;2-R
  4. Doll, R. 1992. The lessons of life. Cancer Research. 52:2024-2029
  5. Drysdale, B.E., C.M. Zacharchuk, M. Okajima, and H.S. Shin. 1986. Assay of a cytocidal protein excreted by activated macrophages. Method. Enzymol. 132: 549-55 https://doi.org/10.1016/S0076-6879(86)32040-8
  6. Fish, B. 1984. Clinical trials for the evaluation of cancer therapy. Cancer Res. 54: 609-615
  7. Hamada, A. 2005. Development of an individualized therapy for establishing the optimal dosage by the pharmacokinetics profiles of anticancer agents. Yakugaku zasshi 125(8):631-637 https://doi.org/10.1248/yakushi.125.631
  8. Hwang, I.G., K.S. Woo, T.M. Kim, D.J. Kim, M.H. Yang, and H.S. Jeong. 2006. Change of physicochemical characteristics of korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Kor. J. Food Sci. Technol. 38(3):342-347
  9. Kelly, W., X. Wu, and R.H. Liu. 2003. Antioxidant activity of apple peels. J. Agric. Food Chem. 51(3):609-614 https://doi.org/10.1021/jf020782a
  10. Kennelly, E.J., C. Gerhauser, L.L. Song, J.G. Graham, C.W.W. Beecher, J.M. Pezzuto, and A.D. Kinghorn. 1997. Induction of quinone reductase by withanolides isolated from Physalis philadelphica (tomatillos). J. Agric. Food Chem. 45:3771-3777 https://doi.org/10.1021/jf970246w
  11. Kim, H.Y., K.S. Woo, I.G. Hwang, Y.R. Lee, and H.S. Jeong. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J. Food Sci. Technol. 40(2):166-170
  12. Kim, J.S, Y.J. Nam, and T.W. Kwon. 1996. Induction of quinone reductase activity by genistein, soybean isoflavone. Food Sci. Biotechnol. 5(1):70-75
  13. Kim, H.J., M.H. Yu, S.O. Lee, J.H. Park, D.C. Park, and I.S. Lee. 2004. Effects of plum fruits extracts at different growth stages on quinone reductase induction and growth inhibition on cancer cells. J. Korean Soc. Food Sci. Nutr. 33(9):1445-1450 https://doi.org/10.3746/jkfn.2004.33.9.1445
  14. Kim, Y.E., J.W. Yang, C.H. Lee, and E.K. Kwon. 2009. ABTS radical scavenging and anti-tumor effects of Tricholoma matsutake Sing (pine mushroom). J. Korean Soc. Food Sci. Nutr. 35(5):555-560 https://doi.org/10.3746/jkfn.2009.38.5.555
  15. Kinghorn, A.D., B. Cui, A. Ito, H.S. Chung, E.K. Seo, L. Long, and L.C. Chang. 2000. Fractionation of plants to discover substances to combat cancer. Biologically active natural products. Pharmaceuticals. CRC Press, Washington D.C., USA, pp. 17-24
  16. Martin, A. and M. Clynes. 1993. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology 11(1):49-58 https://doi.org/10.1007/BF00749057
  17. Mehta, R.G., J. Liu, A. Constantinou, C.F. Thomas, M. Hawthorne, M. You, C. Gerhauser, J.M. Pezzuto, R.C. Moon, and R.M. Moriarty. 1995. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis 16:399-404 https://doi.org/10.1093/carcin/16.2.399
  18. National Statistical Office. 2008. Annual report on the cause of death statistics. Republic of Korea
  19. Park, S.D., Y.S. Shin, S.G. Bae, Y.J. Seo, I.K. Yeon, and H.W. Do. 2004. Colletion of cultivation of oriental melon. Jae-Tak Youn. Seong ju fruit vegetable experiment station. Korea, pp. 7-13
  20. Prochaska, H.J., M.J. De Long, and P. Talalay. 1985. On the mechanism of induction of cancer protective enzymes; A unifying proposal. Proc. Natl. Acad. Sci. USA 82(23):2832-2836
  21. Prochaska, H.J. and A.B. Santamaria. 1998. Direct measurement of NAD(P)H: quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal. Biochem. 169(2):328-36 https://doi.org/10.1016/0003-2697(88)90292-8
  22. Shim, S.M., S.W. Choi, and S.J. Bae. 2001. Effects of punica granatum L. fractions on quinone reductase induction and growth inhibition on serveral cancer cells. J. Kor. Soc. Food Sci. Nutr. 30(1):80-85
  23. Shin, Y.S., J.E. Lee, I.K.Yeon, H.W. Do, J.D. Cheung, C.K. Kang, S.Y. Choi, S.J. Youn, J.G. Cho, and D.J. Kwoen. 2008. Antioxidant and antimicrobial effects of extract with water and ethanol of oriental melon (Cucumis melo L. var makuwa Makino). J. Kor. Soc. Appl. Biol. Chem. 51(3):194-199
  24. Shin, Y.S., J.E. Lee, I.K. Yeon, H.W. Do, J.D. Cheung, C.K. Kang, S.Y. Choi, S.J. Youn, J.G. Cho, and D.J. Kwoen. 2008. Antioxidant effects and tyrosinase inhibition activity of oriental melon (Cucumis melo L. var makuwa Makino) extracts. J. Life Scien. 18(7): 963-967
  25. Sporn, M.B. 1998. Carcinogenesis and cancer. Cancer Res. 51:6215-6218
  26. Steinkellner, H., S. Rabot, C. Freywald, E. Nobis, G. Scharf, M. Chabicovsky, S. Knasmuller, and F. Kassie. 2001. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat. Res. 1:480-481 https://doi.org/10.1016/S0027-5107(01)00188-9
  27. Talalay, P. and A.M. Benson. 1982. Elevation of quinone reductase activity by anticarcinogenic antioxidants. Adv. Enzyme Reg. 20:287-300 https://doi.org/10.1016/0065-2571(82)90021-8
  28. Talalay, P., J.W. Fahey, W.D. Holtzclaw, T. Prestera, and Y. Zhang. 1995. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol. Lett. 82(83): 173-179 https://doi.org/10.1016/0378-4274(95)03553-2
  29. Wefers, H., T. Komai, P. Talalay, and H. Sies. 1984. Protection against reactive oxygen species by NAD(P)H: quinone reductase induced by the dietary antioxidant butylated hydroxyanisole (BHA). Decreased hepatic low-level chemiluminescence during quinone redox cycling. FEBS Lett. 169(1):63-66 https://doi.org/10.1016/0014-5793(84)80290-2
  30. Yu, M.H., H.J. Lee, H.G. Im, S.O. Lee, and I.S. Lee. 2006. Induction of quinone reductase activity in hepatoma cells by paprika (Capsicum annuum L.). Kor. J. Food Sci. Technol. 38(5):707-711
  31. Zhang, Y., T.W. Kensler, C.G. Cho, G.H. Posner, and P. Talalay. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. USA 91(8):3147-3150 https://doi.org/10.1073/pnas.91.8.3147