매트재배에서 Ardisia 소형분화 생산에 적합한 배지의 물리성

Optimum Physical Property of Media for the Production of Small Potted Ardisia in Capillary Mat Irrigation System

  • 이동수 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 권오근 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이영란 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Lee, Dong-Soo (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, Oh-Keun (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Young-Ran (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, University of Seoul)
  • 발행 : 2009.12.31

초록

배지의 적정 수분함량과 기상율은 분화식물 생산에 있어 중요한 환경 요인들이다. 매트관수시스템에서 Ardisia 소형분화 생산에 적합한 배지의 물리성을 구명 하고자 실험을 수행하였다. 실험에 사용된 공시 작물은 산호수와 자금우였다. 피트모스 배지에 왕겨와 펄라이트를 각각 부피비로 20, 40, 60%로 혼합하였다. 배지의 총공극은 왕겨의 혼합비율이 증가함에 따라 증가하였으나, 펄라이트는 혼합비율이 증가함에 따라 감소하였으며, 왕겨와 펄라이트의 혼합비율이 증가함에 따라 기상율은 증가하였으나, 배지의 수분함량은 감소하였다. 배지의 기상율은 왕겨 혼합배지에서 펄라이트 혼합배지보다 높았으며 증가율은 왕겨혼합배지에서 더 높았다. 배지의 $CO_2$ 농도는 기상율이 증가함에 따라 감소 하였는데, 왕겨 혼합배지에서 펄라이트 혼합배지보다 $CO_2$ 농도가 더 높았다. 산호수와 자금우의 생체중과 건물중은 왕겨를 60% 혼합한 배지에서 가장 높았으나, 지상부와 지하부의 건물 비율은 가장 낮았다. 매트관수 시스템에서 Ardisia속 식물인 산호수와 자금우의 소형 분화 생산에 적합한 배지의 물리성은 총공극과 기상율, 포트용수량이 각각 82.8, 25.6, 57.2%이었다.

Adequate conditions of water content and aeration of container media are major environmental factors in the production of pot plant. This experiment was carried out to find optimum physical property of media for the production of small potted Ardisia in capillary mat irrigation system. The plant materials used in this experiment were Ardisia pusilla and Ardisia japonica. Seven substrates were formulated by blending perlite or fresh rice hulls at 20%, 40%, 60% (v/v) with sphagnum peat. Total pore space (TPS) increased by blending sphagnum peat with fresh rice hulls, but decreased by blending sphagnum peat with perlite. As fresh rice hull (FRH) and perlite content increased, air filled pore space (AFP) of substrate increased but container capacity (CC) decreased. Substrate blended with fresh rice hull was higher AFP than blended with perlite and the rate of increase was higher for FRH-containing substrate. As AFP increased, the $CO_2$ concentration in the pot decreased and the $CO_2$ concentration of substrate blended with FRH was higher than blended with perlite. The fresh and dry weight of Ardisia pusilla and A. japonica was the highest in the substrate contained 60% FRH, but the ratio of shoot dry weight to root dry weight was the lowest. The optimum total pore space, air-filled pore space, water holding capacity of substrate for the growth of Ardisia pusilla and A. japonica in the capillary mat irrigation system were 82.8%, 25.6%, and 57.2% respectively.

키워드

참고문헌

  1. Allaire, S.E., J. Caron, I. Duchesne, L.E. Parent, and J.A. Rioux. 1996. Air-filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus ${\times}$ cistena sp. growth in peat substrates. J. Amer. Soc. Hort. Sci. 121:236-242
  2. Argo, W.R. and J.A. Biernbaum. 1996. Root medium carbon dioxide and oxygen partial pressure for container-grown chrysanthemums. HortScience 31:385-388
  3. Biasi, C., S.E. Lind, N.M. Pekkarinen, J.T. Huttunen, N.J. Shurpali, N.P. Hyvonen, M.E. Repo, and P.J. Martikainen. 2008. Direct experimental evidence for the contribution of lime to $CO_2$ release from managed peat soil. Soil Biology & Biochemistry 40:2660-2669 https://doi.org/10.1016/j.soilbio.2008.07.011
  4. Bilderback, T.E., W.C. Fonteno, and D.R. Johnson. 1982. Physical properties of media composed of peanut hulls, pine bark, and peatmoss and their effects on azalea growth. J. Amer. Soc. Hort. Sci. 107:522-525
  5. Biran, I. and A. Eliassaf. 1980. The effect of container size and aeration conditions on growth of roots and canopy of woody plants. Scientia Horticulturae 12:385-394 https://doi.org/10.1016/0304-4238(80)90054-0
  6. Bish, E.B., D.J. Cantliffe, and C.K. Chandler. 1997. Container volume and media particle size alter growth of strawberry transplants. Proc. Fla. State Hort. Soc. 110:258-261
  7. Bouma, T.J., K.L. Nielsen, D.M. Eissenstat, and J.P. Lynch. 1997. Estimating respiratin of roots in soil: Interaction with soil $CO_2$, soil temperature and soil water content. Plant and Soil 195:221-232 https://doi.org/10.1023/A:1004278421334
  8. Bugbee, G.J. and C.R. Frink. 1986. Aeration of potting media and plant growth. Soil Science 141:438-441 https://doi.org/10.1097/00010694-198606000-00006
  9. Bunt, A.C. 1991. The relationship of oxygen diffusion rate to the air-filled porosity of potting substrates. Acta Hort. 294:215-224
  10. Bures, S., F.A. Pokorny, D.P. Landau, and A.M. Ferrenberg. 1993. Computer simulation of volume shrinkage after mixing container media components. J. Amer. Soc. Hort. Sci. 118:757-761
  11. Evans, M.R. and M.M. Gachukia. 2007. Physical properties of sphagnum peat-based root substrates amended with perlite or parboiled fresh rice hulls. HortTechnology 17(3):312-315
  12. Evans, R.Y., J. Hansen, and L.L. Dodge. 2009. Growth of rose roots and shoots is highly sensitive to anaerobic or hypobic regions of container substrates. Scientia Horticulturae 119:286-291 https://doi.org/10.1016/j.scienta.2008.07.033
  13. Handreck, K.A. 1983. Particle size and the physical properties of growing media for containers. Commun. Soil Sci. Plant Anal. 14:209-222 https://doi.org/10.1080/00103628309367357
  14. Huang, J., P.R. Fisher, and W.R. Argo. 2007. A gasometric procedure to measure residual lime in container substrates. HortScience 42:1685-1689
  15. Jingen, QI., J.D. Marshall, and K.G. Mattson. 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol. 128:435-442 https://doi.org/10.1111/j.1469-8137.1994.tb02989.x
  16. Kuzyakov, Y. and W. Cheng. 2001. Photosynthesis controls of rhizosphere respiratin and organic matter decomposition. Soil Biology & Biotechemistry 33: 1915-1925 https://doi.org/10.1016/S0038-0717(01)00117-1
  17. Kuzyakov, Y.V. and A.A. Larionova. 2006. Contribution of rhizomicrobial and root respiration to the $CO_2$ emission from soil. Eurasian Soil Science 39:753-764 https://doi.org/10.1134/S106422930607009X
  18. Nash, M.A. and F.A. Pokorny. 1990. Shrinkage of selected two-component container media. HortScience 25:930-931
  19. Nash, V.E. and A.J. Laiche. 1981. Change in the characteristics of potting media with time. Commun. Soil Sci. Plant Anal. 12:1011-1020 https://doi.org/10.1080/00103628109367213
  20. Owen, J.S. and J.E. Altland. 2008. Container height and douglas fir bark texture affect substrate physical properties. HortScience 43:505-508
  21. Prasad, M. and J. O'Shea. 1999. Relative breakdown of peat and non-peat growing media. Acta Hort. 481:121-128
  22. Schroeder, F.G. and J.H. Lieth. 2004. Gas composition and oxygen supply in the root environment of substrates in closed hydroponic systems. Acta Hort. 644: 299-305
  23. Spomer, L.A. 1974. Two classroom excerises demonstrating the pattern of container soil water distribution. HortScience 9:152-153
  24. Spomer, L.A. 1975. Small soil contaienrs as experimental tools: soil water relations. Commun. Soil. Sci. and Plant Analysis 6:21-25 https://doi.org/10.1080/00103627509366541
  25. Strojny, Z., P.V. Nelson, and D.H. Willits. 1998. Pot soil air composition in conditions of high soil moisture and its influence on chrysanthemum growth. Scientia Horticulturae 73:125-136 https://doi.org/10.1016/S0304-4238(97)00156-8
  26. Werth, M. and Y. Kuzyakov. 2008. Root-derived carbon in soil respiration and microbial biomass determined by $^{14}C$ and $^{13}C$. Soil Biology & Biochemistry 40:625-637 https://doi.org/10.1016/j.soilbio.2007.09.022
  27. Xu, X. and J.L. Nieber. 1992. Compaction effect on the gas diffusion coefficient in soils. Soil Sci. Soc. Am. J. 56:1743-1750 https://doi.org/10.2136/sssaj1992.03615995005600060014x