DOI QR코드

DOI QR Code

Escape of Pine Wood Nematode, Bursaphelenchus xylophilus, through Feeding and Oviposition Behavior of Monochamus alternatus and M. saltuarius (Coleoptera: Cerambycidae) Adults

솔수염하늘소와 북방수염하늘소의 섭식과 산란행동을 통한 소나무재선충의 이탈

  • Kim, Dong-Soo (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Lee, Sang-Myeong (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Huh, He-Soon (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Park, Nam-Chang (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Park, Chung-Gyoo (Department of Applied Biology/Institute of Agriculture & Life Science (BK21 Program of Graduate School), Gyeongsang National University)
  • 김동수 (국립산림과학원 남부산림연구소) ;
  • 이상명 (국립산림과학원 남부산림연구소) ;
  • 허혜순 (국립산림과학원 남부산림연구소) ;
  • 박남창 (국립산림과학원 남부산림연구소) ;
  • 박정규 (경상대학교 농업생명과학대학 응용생물학과)
  • Published : 2009.12.30

Abstract

This study was performed to investigate the escape of pine wood nematode (PWN), Bursaphelenchus xylophilus, from two vector species (Monochamus alternatus and M. saltuarius) through oviposition and feeding behavior. First, we checked number of PWNs escaped from M. alternatus emerged from three different cases of pine logs. In case A, healthy pine trees were cut into logs and left in pine forest infected with PWN. In case B, healthy pine trees were cut into logs, left in large screen cage, and let them oviposited by M. alternatus emerged from pine trees infested with PWN. In case C, pine trees which were harboring M. alternatus were cut into logs, and PWN was inoculated artificially. The M. alternatus adults emerged from the above three cases of pine logs were checked in the next year to know how many PWN they were harboring in their bodies. The percentages of M. alternatus harboring PWN (18.3 and 15.6%, respectively) and number of nematodes per vector ($5,713.1{\pm}9,248.3$ and $2,034.1{\pm}4,746.8$ PWNs, respectively) in case A and B logs are similar to each other. However, the percentage and the number in case C (38.3% and $20,083.1{\pm}32,188.3$ PWNs) were higher than those of case A and B. Among 52 M. alternatus adults harboring PWN from all the three cases, 20 adults (38.5%) were harboring more than 5,000 PWNs per beetle. And these 20 adults were harboring 97.9% of the total PWNs in 52 adults. Second, we checked the daily escape of PWNs from M. alternatus and M. saltuarius collected at pine forest infested with PWN. The PWN escaped from their vector body for $34.9{\pm}12.4$ days for M. alternatus, and for $23.9{\pm}16.2$ days for M. saltuarius, reaching at peak escape during the 2nd week of emergence of the two vector species. A 44.5 and 47.2% to the total PWNs escaped from vector body within 2 weeks of vector emergence for M. alternatus and M. saltuarius, respectively. The number of PWNs escaped from each vector was $3,570.6{\pm}5,189.2$ and $1,556.2{\pm}1,710.3$ for M. alternatus and M. saltuarius, respectively.

본 연구에서는 소나무재선충병 매개충의 소나무재선충 보유 정도와 산란 및 섭식행동을 통한 전파에 대하여 조사하였다. 첫째, 세 가지 종류의 벌채목으로부터 우화 탈출하는 솔수염하늘소의 소나무재선충 보유 정도를 조사하였다. (가)의 경우는 건전한 소나무를 벌채하여 감염림 내에 방치한 것이고, (나)의 경우는 감염목에서 우화 탈출한 솔수염하늘소를 건전한 벌채목에 산란시켰을 경우이며, (다)의 경우는 솔수염하늘소는 서식하고 있으나 소나무재선충은 보유하지 않은 소나무를 벌채하고 소나무재선충을 인공적으로 접종한 경우이다. 세 경우 모두 이듬해에 벌채목으로부터 우화탈출하는 솔수염하늘소의 소나무재선충 보유율과 보유수를 조사하였다. (가)와 (나)의 경우 소나무재선충 보유율은 각각 18.3%와 15.6%이었고, 보유한 소나무재선충 수는 각각 $5,713.1{\pm}9,248.3$마리와 $2,034.1{\pm}4,746.8$마리로서 차이가 없었다. 그러나 인공적으로 소나무재선충을 접종한 (다)의 경우에는 소나무재선충 보유율과 보유수가 각각 38.3%와 $20,083.1{\pm}32,188.3$마리로서 다른 두 경우에 비해 높은 경향이었다. 한편, 소나무재선충 보유수를 조사한 세 경우 전체 52마리의 솔수염하늘소 중에서 20마리(38.5%)가 5,000마리 이상의 소나무재선충을 보유하고 있었고, 이들 20마리가 보유한 소나무 재선충이 전체 소나무재선충의 97.9%를 차지하였다. 둘째, 야외의 소나무재선충 감염림에서 채취한 소나무로부터 우화한 솔수염하늘소와 북방수염하늘소의 섭식 과정 중에 이들로부터 이탈하는 소나무재선충의 수를 조사하였다. 소나무재선충이 솔수염하늘소와 북방수염하늘소 몸으로부터 이탈한 일수는 각각 $34.9{\pm}12.4$일과 $23.9{\pm}16.2$일이었고, 우화 후 2주째에 가장 많이 탈출하였다. 우화 후 2주 이내에 탈출한 소나무재선충의 비율은 솔수염하늘소의 경우는 44.5%, 북방수염하늘소의 경우에는 47.2%이었으며, 매개충 한 마리당 이탈하는 소나무재선충의 수는 각각 $3,570.6{\pm}5,189.2$ 마리와 $1,556.2{\pm}1,710.3$ 마리이었다.

Keywords

References

  1. Dwinell, L.D. 1993. First report of the pine wood nematode (Bursaphelenchus xylophilus) in Mexico. Plant Dis. 69: 440
  2. Edwards, O.R. and M.J. Linit. 1992. Transmission of Bursaphelenchus xylophilus through oviposition wounds of Monochamus carolinensis (Coleoptera: Cerambycidae). J. Nematol. 24: 133-139 https://doi.org/10.1111/j.1439-0418.2006.01111.x
  3. Enda, N. 1972a. Insect vectors of the pine wood nematode and the number of nematodes in the insect vectors. Trans. Ann. Mtg. Kanto. Br. Jpn. For. Soc. 24: 31
  4. Enda, N. 1972b. Removing dauer larvae of Bursaphelenchus lignicolus from the body of Monochamus alternatus. Trans. Ann. Mtg. Kanto. Br. Jpn. For. Soc. 24: 32
  5. Hosoda, R., M. Okuda, A. Taketani and K. Kobayashi. 1974. Number of pine wood nematodes extracted from the pine sawyer adults emerged from dead pine trees in pine forest on a cold winter. Trans. Mtg. Jpn. For. Soc. 85: 231-233
  6. Hosoda, R. and K. Kobayashi. 1978. Drop-off procedures of the pine wood nematode from the pine sawyer (II), Trans. Ann. Mtg. Kanto. Br. Jpn. For. Soc. 29: 131-133
  7. KFRI. 2007. Damage characteristics and control strategies of pinewood nematode, Bursaphelenchus xylophilus in Korean white pine forest. pp 1-12. Korea Forest Research Institute, Seoul
  8. KFRI. 2008. Annual report on forest pests monitoring in 2008. Korea Forest Research Institute, Seoul. 565 pp
  9. Kim, D.S., S.M. Lee, Y.J. Chung, K.S. Choi, Y.S. Moon and C.G. Park. 2003. Emergence ecology of Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae), a vector of pinewood nematode, Bursaphelenchus xylophilus . Korean J. Appl. Entomol. 42: 307-313
  10. Kishi, Y. 1995. The pine wood nematode and the Japanese pine sawyer. Thomas Company Ltd, Tokyo, Japan. 302 pp
  11. Knowles, K., Y. Beaublen, M.J. Wingfield, F.A. Baker and D.W. French. 1983. The pinewood nematode new in Canada. Forestry Chronicle 59: 40
  12. Kobayashi, K. 1975. Relationship between the degree of the mortality of pine trees and the number of Monochamus alternatus. Forest Pest 24: 206-208
  13. Kobayashi, F., A. Yamane and T. Ikeda. 1984. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annu. Rev. Entomol. 29: 115-135 https://doi.org/10.1146/annurev.en.29.010184.000555
  14. Linit, M.J. 1988. Nematode-vector relationship in the pine wilt disease system. J. Nematol. 20: 227-235
  15. Mamiya, Y. and N. Enda. 1972. Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae). Nematologica 18: 159-162 https://doi.org/10.1163/187529272X00395
  16. Mamiya, Y. 1983. Pathology of the pine wilt disease caused by Bursaphelenchus lignicolus. Annu. Rev. Phytopathol. 21: 201-220 https://doi.org/10.1146/annurev.py.21.090183.001221
  17. Mamiya, Y. 1988. History of pine wilt disease in Japan. J. Nematol. 20: 219-226
  18. Mineo, K. 1975. Drop-off of pine wood nematodes from the pine sawyer and their invasion of pine trees. Trans. Ann. Mt. Kansai Br. Jpn. For. Soc. 26: 275-278
  19. Mineo, K. and S. Kontani. 1975. On the vertical movement in the trunk of pine trees inoculated PWN. Annu. Phytophathol. Soc. Jpn. 41: 92 https://doi.org/10.3186/jjphytopath.41.92
  20. Morimoto, K. and A. Iwasaki. 1972. Role of Monochamus alternatus (Coleoptera: Cerambycidae) as a vector of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae). J. Jpn. For. Soc. 54: 177-183
  21. Sato, H., T. Sakuyama and M. Kobayashi. 1987. Transmission of Bursaphelenchus xylophilus (Steiner et Buhrer) (Nematoda, Aphelenchoididae)by Monochamus saltuarius (Gebler) (Coleoptera, Cerambycidae). J. Jpn. For. Soc. 69: 492-496
  22. Sousa, E., M.A. Bravo, J. Pires, P. Naves, A.C. Penas, L. Bonifacio and M.M. Mota. 2001. Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematol. 3: 89-91 https://doi.org/10.1163/156854101300106937
  23. Steiner, G. and E.M. Buhrer. 1934. Aphelenchoides xylophilus n. sp., a nematode associated with blue stain and other fungi in timber. J. Agric. Res. 48: 949-951
  24. Takeda, J., N. Ido and K. Kobayashi. 1976. Difference in number of pine wood nematodes carried by newly-emerged adults of Monochamus alternatus Hope from different location. Trans. Mtg. Jpn. For. Soc. 87: 251-252
  25. Wingfield, M.J. and R.B. Blanchette. 1983. The pine-wood nematode, Bursaphelenchus xylophilus, in Minnesota and Wisconsin: insect associates and transmission studies. Can. J. For. Res. 13: 1068-1076 https://doi.org/10.1139/x83-143

Cited by

  1. Physiological development and dispersal ability of newly emergedMonochamus galloprovincialis vol.161, pp.2, 2016, https://doi.org/10.1111/eea.12497
  2. Stability Analysis and Optimal Control Strategy for Prevention of Pine Wilt Disease vol.2014, 2014, https://doi.org/10.1155/2014/182680
  3. A forecasting model for the adult emergence of overwintered Monochamus alternatus (Coleoptera: Cerambycidae) larvae based on degree-days in Korea vol.49, pp.1, 2014, https://doi.org/10.1007/s13355-013-0221-3
  4. Development of Effective Screening Method for Efficacy Test of Trunk Injection Agents Against Pine Wood Nematode, Bersaphelenchus xylophilus in Japanese Black Pine, Pinus thunbergii vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.440
  5. Fluorescein-5 isothiocyanate conjugated-chitin-binding domain probe (FITC-CBD)-coupled detection of chitin in the peritrophic membrane of Monochamus alternatus (Coleoptera: Cerambycidae) vol.15, pp.3, 2012, https://doi.org/10.1016/j.aspen.2012.01.009
  6. Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03179-w
  7. Qualitative analysis and sensitivity based optimal control of pine wilt disease vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1486-1
  8. on flight mills vol.166, pp.5, 2018, https://doi.org/10.1111/eea.12686