DOI QR코드

DOI QR Code

담배거세미나방과 파밤나방에 활성이 있는 Bacillus thuringiensis subsp. aizawai CAB109 균주의 특성

Characterization of Bacillus thuringiensis subsp. aizawai CAB109 isolate with bioactivities to Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae)

  • 김태환 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김다아 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김기수 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Kim, Tae-Hwan (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Ki-Su (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Seo, Mi-Ja (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
  • 발행 : 2009.12.30

초록

국내에서 분리된 Bacillus thuringiensis subsp. aizawai CAB109균주가 난방제 해충으로 알려진 담배거세미나방과 파밤나방에 동시에 높은 독성을 보이는 것으로 나타났다. B.t. CAB109 균주의 활성을 평가하기 위해 혈청형이 aizawai이면서 미생물농약으로 시판중인 TB-WP제품 및 SC제품과의 살충활성을 비교한 결과, B.t. CAB109균주, TB-WP제품, SC제품은 담배거세미나방 2령충에 대한 반수치사농도($LC_{50}$)가 각각 $1.3{\times}10^5cfu/ml$, $2.3{\times}10^6cfu/ml$, $5.2{\times}10^5cfu/ml$으로 나타났고 파밤나방 2령충에 대한 반수치사농도는 $1.8{\times}10^4cfu/ml$, $1.3{\times}10^6cfu/ml$, $1.5{\times}10^6cfu/ml$으로 나타나 두 종 해충 모두에서 B.t. CAB109 균주가 독성이 더 높은 것을 볼 수 있었다. B.t. CAB109균주가 이미 알려져 있는 aizawai와 비교해 차이가 나는 새로운 유전자를 소유하는지 확인하기 위해 Plasmid DNA를 추출하여 전기영동 한 결과 B.t. subsp. aizawai HD-133과 다른 패턴을 보이는 것을 확인 할 수 있었고 Cry1-Cry5의 primer를 사용하여 PCR을 진행한 결과 B.t. subsp. aizawai CAB109균주는 Cry1Aa, 1Ab, 1C, 1D를 B.t. subsp. aizawai HD-133은 Cry1Aa, 1Ab를 가지고 있음을 확인 할 수 있었다.

Bacillus thuringiensis subsp. aizawai CAB109 isolated in Korea is known active against Spodoptera sp.. Especially, B. thuringiensis aizawai CAB109 isolates showed 100% mortality against Spodoptera litura and Spodoptera exigua. To screen highly active B. thuringiensis, the pathogenicity of B. thuringiensis CAB109 was compared with that of commercialized B. thuringiensis products. $LC_{50}$ values of CAB109, product TB-WP and product SC strains of B. thuringiensis were $1.3{\times}10^5$, $2.3{\times}10^6$ and $5.2{\times}10^5\;cfu/ml$ against the 2nd larva of S. litura and $1.8{\times}10^4$, $1.3{\times}10^6$ and $1.5{\times}10^6\;cfu/ml$ against the 2nd larva S. exigua, respectively. To determine new gene's existence and absence, the plasmid DNA was extracted, and compared to that of B.t. aizawai HD-133. Both B. thuringiensis were not like plasmid DNA pattern. PCR technique was used to predict both plasmid DNA's cry gene. PCR products analysis showed that B.t. CAB109 harbor Cry1Aa, Cry1Ab, Cry1C and Cry1D and B.t. HD-133 has Cry1Aa and Cry1Ab, respectively.

키워드

참고문헌

  1. Ahn, S.B., I.S. Kim, W.S. Cho, M.H. Lee and K.M. Choi. 1989. The occurrence of the crop insect pests from Korea in 1988. Korean J. Appl. Entomol., 28(4): 246-253
  2. Bae, S.D. 1999. Leaf characteristics of leguminous plants and the biology of tobacco cutworm, Spodoptera litura Fabricius: I. The larval development and leaf feeding amount. Korean J. Appl. Entomol., 38(3): 217-224
  3. Bae, S.D., B.R. Choi, Y.H. Song and H.J. Kim. 2003. Insecticide susceptibility in the different larva of tobacco cutworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae) collected in the soybean fields of Milyang, Korea. Korean J. Appl. Entomol., 42(3): 225-231
  4. Bae, S.D., K.B. Park and Y.J. Oh. 1997. Effect of temperature and food source on the egg and larval development of tobacco cutworm, Spodoptera litura Fabricius. Korean J. Appl. Entomol., 36(1): 48-54
  5. Bechtel, D.B. and L.A. Bulla, Jr. 1976. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J. Bacteriol. 127(3): 1472-1481
  6. Choi, J.Y., H.S. Kim, B.R. Jin, K.Y. Seol, H.Y. Park and S.K. Kang. 1996. Pathogenicity and production of Spodoptera exigua nuclear polyhedrosis virus. Korean J. Appl. Entomol., 35(3): 228-231
  7. Choi, S.Y., M.S. Cho, T.H. Kim, J.S. Kim, S.K. Pack, Y.N. Youn and Y.M. Yu. 2008. Bioactive characterization of Bacillus thuringiensis subsp. kurstaki CAB133 isolated from domestic soil. Korean J. Appl. Entomol. 47(2): 175-184 https://doi.org/10.5656/KSAE.2008.47.2.175
  8. Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Rie, J.V., Lereclus, D., Baum, J. and Dean, D.H. 1998. Revision of the nomenclature for the Bacillus thuringiensis Pesticidal crystal protein. Microbiol. Mol. Bio. Rev., 62(3): 807-813
  9. Feitelson, J.J., J. Payne and L. Kim. 1992. Bacillus thuringiensis: insexts and beyond. Bio/Technology. 10: 271-275 https://doi.org/10.1038/nbt0392-271
  10. Finney, D.J. 1971. Probit analysis, estimation of the median effective dose. Cambridge University Press. London. 19-47
  11. Garad, G.P., P.R. Shivpuje and G.G. Bilapate. 1984. Life fecundity tables of Spodoptera litura Fabricius on different hosts. Proc. Indian Acad. Sci. (Anim Sci.). 93: 29-33 https://doi.org/10.1007/BF03186223
  12. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol., 37: 615-636 https://doi.org/10.1146/annurev.en.37.010192.003151
  13. Gill, S.S., E.A. Cowles and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis Cry1Ac toxin binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem., 270: 27277-27282 https://doi.org/10.1074/jbc.270.45.27277
  14. Goh, H.G., S.G. Lee, B.P. Lee, K.M. Choi and J.H. Kim. 1990. Simple mass-Rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29(3): 180-183
  15. Goh, H.G., J.D. Park, Y.M. Choi, K.M. Choi and I.S. Park. 1991. The host plants of beet armyworm, Spodoptera exigua (Hübner), (Lepidoptera: Noctuidae) and its occurrence. Korean J. Appl. Entomol. 30(2): 111-116
  16. Hernandez-Martinez, P., Ferre, J. and Escriche, B. 2008. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J. Inver. Pathol. 97(3): 245-250 https://doi.org/10.1016/j.jip.2007.11.001
  17. Hughes, P.A., M.M. Stevens, H.W. Park, B.A. Federici, E.S. Dennis and R. Akhurst. 2005. Response of larval Chironomus tepperi (Diptera: Chironomidae) to individual Bacillus thuringiensis var. israelensis toxins and toxin mixtures. Journal of invertebrate pathology., 88(1): 34-39 https://doi.org/10.1016/j.jip.2004.10.004
  18. Jin, D.Y., M.S. Cho, S.Y. Choi, Y.N. Youn, I.C. Hwang and Y.M. Yu. 2008. Selection of crop protectant for friendly environmental control of Spodoptera exigua (Lepidoptera: Noctuidae). Korean J. Appl. Entomol., 47(1): 45-50 https://doi.org/10.5656/KSAE.2008.47.1.045
  19. Jin, D.Y., S.K. Paek, J.S. Kim, S.Y. Choi, C. Park, T.H. Kim, N.Y. Jin, S.Y. Jung, Y.N. Youn and Y.M. Yu. 2009. Environment-friendly control of beet armyworm, Spodoptera exigua (Noctuidae: Lepidoptera) to reduce insecticide use. Korean J. Appl. Entomol., 48(2): 253-261 https://doi.org/10.5656/KSAE.2009.48.2.253
  20. Kil, M.R., D.A Kim, S.K. Paek, J.S. Kim, S.Y. Choi, D.Y. Jin, Y.N. Youn, I.C. Hwang, M. Ohba and Y.M. Yu. 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva, Korean J. Appl. Entomol., 47(4): 457-465 https://doi.org/10.5656/KSAE.2008.47.4.457
  21. Kim, D.A, J.S. Kim, M.R. Kil, S.K. Paek, S.Y. Choi, D.Y. Jin, Y.N. D.Y.I.C. Hwang and Y.M. Yu. 2008. Characterization of new Bacillus thuringiensis isolated with bioactivities to tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Korean J. Appl. Entomol., 47(1): 87-93 https://doi.org/10.5656/KSAE.2008.47.1.087
  22. Kim, C.H. and H.Y. Shin. 1987. Studies on bionomics and control of tobacco cutworm, Spodoptera litura Fabricius in southern part of Korea. J. Inst. Agr. Res. Util. Gyeongsang National. Univ. 21: 105-122
  23. Kim, H.S., M.S. Li, and J.Y. Roh. 2000. Characterization of crystal proteins of Bacillus thuringiensis NT0423 isolate from korean sericultural farms. Int. J. Indust. Entomol., 1(2): 115-122
  24. Kurstak, E. 1982. Microbial and Viral Pesticides. pp. 35-74. Marcell-Dekker, New York
  25. Lecadet, M.M. and D. Martouret. 1967. The enzymatic hydrolysis of Bacillus thuringiensis berliner crystals, and the liberation of toxin fractions of bacterial origin by the cycle of Pieris brassicae (Linnaeus). J. Invertebr. Pathol. 7: 105-108 https://doi.org/10.1016/0022-2011(65)90163-1
  26. Luo, K., D. Banks and M.J. Adang. 1998. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 d-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65(2): 457-464
  27. Masson, L., M. Erlandson and M. Puzstai-Carey. 1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Applied and environmental microbiology., 64(12): 4782-4788
  28. Park, H.W., H.S. Kim, D.W. Lee, Y.M. Yu, B.R. Jin and S.K. Kang. 1995. Expression and synergistic effect of three types of crystal protein genes in Bacillus thuringiensis. Biochem. Biophys. Res. Commun., 214(2): 602-607 https://doi.org/10.1006/bbrc.1995.2328
  29. Porcar, M. and V. Juarez-Perez. 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS microbiology reviews., 26(5): 419-432 https://doi.org/10.1111/j.1574-6976.2003.tb00624.x
  30. Porcar, M., C. Martínez and N. Clara. 2000. Host range and gene contents of Bacillus thuringiensis strains toxic towards Spodoptera exigua. Entomol. Exp. Appl. 97(3): 339-346 https://doi.org/10.1023/A:1004140122226
  31. Raymond, M. 1985. Presentation d'un programme d'analyse logprobit pour micro-ordinnateur. Cah. ORSTOM. Ser. Ent. Med. et Parasitol. 22: 117-121
  32. Schnepf, H.E. 1995. Bacillus thuringiensis toxins: Regulation, activities and structural diversity. Curr. Opin. Biotech. 6(3): 305-312 https://doi.org/10.1016/0958-1669(95)80052-2
  33. Tabashink, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol., 39: 47-79 https://doi.org/10.1146/annurev.en.39.010194.000403
  34. Tamez-Guerra, P., A.A. Iracheta, B. Pereyra-Alferez, L.J. Galan-Wong, R. Gomez-Flores, R.S. Tamez-guerra, and C.Rodriguez-Padilla. 2004. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. J. Invertebr. Pathol. 8: 7-18 https://doi.org/10.1016/j.jip.2004.02.009
  35. Wasano N., C. Yasunaga-Aoki, R. Sato, M. Ohba, T. Kawarabata and H. Iwahana. 2000. Spherical parasporal inclusions of the lepidoptera-specific and coleoptera-specific Bacillus thuringiensis strains: A comparative electron microscopic study. Current Microbiol. 40(2): 128-131 https://doi.org/10.1007/s002849910025
  36. Yamamoto, T. and R.E. McLaughin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. Kurstaki toxic to the mosquito larva, Ades taeniorliymchus. Biochem, Biophs. Res. Commun., 103: 414-421 https://doi.org/10.1016/0006-291X(81)90468-X
  37. Zheng, S.J., B. Henken, R.A. de Maagd, A. Purwito, F.A. Krens and C. Kik. 2005. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hubner) in transgenic Bt-shallots (Allium cepa L.). Transgemic Research, 14: 261-272 https://doi.org/10.1007/s11248-005-0109-2

피인용 문헌

  1. Genetic characteristics of the novel insect pathogenic Bacillus thuringiensis subsp. aizawai strain vol.41, pp.4, 2014, https://doi.org/10.7744/cnujas.2014.41.4.351