DOI QR코드

DOI QR Code

Isolation of an Agarolytic Bacteria, Cellvibrio mixtus SC-22 and The Enzymatic Properties

한천분해세균 Cellvibrio mixtus SC-22의 분리 및 효소적 특성

  • Cha, Jeong-Ah (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University) ;
  • Kim, Yoo-Jin (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University) ;
  • Seo, Yung-Bum (Department of Forest Products, College of Agriculture and Lifesciences, Chungnam National University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University)
  • 차정아 (충남대학교 생물환경화학과) ;
  • 김유진 (충남대학교 생물환경화학과) ;
  • 서영범 (충남대학교 임산공학과) ;
  • 윤민호 (충남대학교 생물환경화학과)
  • Published : 2009.12.31

Abstract

An agar-liquefying bacteria (SC-22), which produces a diffusible agarase that caused agar softening around the colony was isolated from Daecheong lake in Korea. Chemotaxanomic and phylogenetic analyses based on 16S rRNA gene sequences revealed the strain was classified as Cellvibrio mixtus SC-22. The isolate SC-22 showed maximal extracellular agarase activity with 58.5 U/mL after 48 h cultivation in the presence of 0.2% agar. It was observed that the isolate produced two kinds of extracellular and three kinds of intracellular isoenzymes. The major agarase was purified from the culture filtrate of agarolytic bacteria by ammonium sulfate precipitation, anion exchange and gel filtration column chromatographic methods. The molecular mass of the purified enzyme was estimated to be 25 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 7.0 and $50^{\circ}C$, respectively. The agarase activity was activated by $Fe^{2+}$, $Na^+$ and $Ca^{2+}$ ions while it was inhibited by $Hg^{2+}$, $Mn^{2+}$ and $Cu^{2+}$ at 1 mM concentration. The predominant hydrolysis product of agarose by the enzyme was galactose and disaccharide on TLC, indicating the cleavage of $\beta$-1,4 linkage in a random manner. The enzyme showed high substrate specificity for only agar and agarose among various polysaccharides.

한천분해세균 SC-22균을 대전 대청댐부근의 담수에서 분리하였다. 생화학적 분석 및 16S rRNA 염기서열 분석을 통한 계통학적 분류를 통해 SC-22는 Cellvibrio mixtus로 동정되었다. 분리균의 생육 및 agarase 효소 생성능을 검토한 결과, SC-22는 탄소원으로 0.2% agar를 첨가한 배지에서 배양 36시간에 최대 생육을, 배양 48시간에 58.5 units/mL의 최대 효소활성을 나타내었다. 분리균은 세포외 및 세포내 agarase를 생성하였으며, zymogram 실험에 의해 P1, P2 및 P3의 isoenzyme을 분비하는 것으로 확인 되었다. 배양여액으로부터 겔여과법과 이온교환수지법을 단계적으로 이용하여 SC-22 균주로부터 SDS-PAGE에 의해 25 kDa의 효소를 정제하였으며, 정제효소는 zymogram에서 확인된 주 단백질인 P2(29 kDa)과 동일한 단백질임이 확인되었다. 또한 정제한 agarase의 효소학적 성질을 검토한 결과, 효소의 최적 pH와 최적온도는 pH 7.0과 $50^{\circ}C$이었으며, 금속이온 효과의 경우 1 mM 농도의 수준에서도 $Fe^{2+}$, $Na^+$, $Ca^{2+}$ 이온 등은 정제효소의 활성을 10-20% 증가시킨 반면 $Hg^{2+}$, $Mn^{2+}$$Cu^{2+}$ 이온들은 효소 활성을 크게 저해하였다. 또한 TLC 분석을 통해 정제효소는 한천 분해 올리고당으로 주로 단당류와 이당류를 생성하므로 $\beta$-agarase의 작용특성을 보였다. 기질특이성 실험에서는 정제효소는 agar와 agarose만을 이용 하였고 유사 해조 다당류인 alginate는 물론 다른 다당류를 분해하지 못하였다.

Keywords

References

  1. Aoki T, Araki T, and Kitamikado M (1990) Purification and characterization of a novel $\beta$-agarase from Vibrio sp. AP-2. Eur J Biochem 187, 461-466 https://doi.org/10.1111/j.1432-1033.1990.tb15326.x
  2. Belas R, Bartlett D, and Silverman M (1988) Cloning and gene replacement mutagenesis of a Pseudomonas atlantica agarase gene. Appl Environ Microbiol 54, 30-37
  3. Buttner MJ, Fernley IM, and Bibb MJ (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2); nucleotide sequence and transcriptional analysis. Mol Gen Genet 209, 101-109 https://doi.org/10.1007/BF00329843
  4. Collins MD, Goodfellow M, and Minnikin DB (1979) Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110, 127-136 https://doi.org/10.1099/00221287-110-1-127
  5. Duckworth M and Yaphe W (1970) Thin-layer chromatographic analysis of enzymic hydrolysate of agar. J Chromatogr 49, 482-487 https://doi.org/10.1016/S0021-9673(00)93663-X
  6. Ezaki T, Hashimoto Y, and Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224-229 https://doi.org/10.1099/00207713-39-3-224
  7. Flament D, Barbeyron T, Jam M, Potin P, Czjzek M, Kloareg B, and Michel G (2007) Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Appl Environ Microbiol 73, 4691-4694 https://doi.org/10.1128/AEM.00496-07
  8. Ikemoto A, Kobayashi T, Emoto K, Umeda M, Watanabe S, and Okuyama H (1999) Effect of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch Biochem Biophys 364, 67-74 https://doi.org/10.1006/abbi.1999.1110
  9. Lakshmikanth M, Manohar S, Lalitha J (2009) Purification and characterization of $\beta$-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Proc Biochem 44, 999-1003 https://doi.org/10.1016/j.procbio.2009.04.025
  10. Lakshmikanth M, Manohar S, Souche Y, and Lalitha J (2006) Extracellular $\beta$-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol 22, 1087-1094 https://doi.org/10.1007/s11274-006-9147-z
  11. Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265-275
  12. Morrice LM, McLean MW, Long WF, and Williamson FB (1983) $\beta$-Agarases I and II from Pseudomonas atlantica. substrate specificities. Eur J Biochem 137, 149-154 https://doi.org/10.1111/j.1432-1033.1983.tb07808.x
  13. Na NMK, Kin Y, and Yaphe W (1972) Properties of agar: Parameters affecting gel-formation and the agarose-iodine reaction. Carbohyd Res 25, 379-385 https://doi.org/10.1016/S0008-6215(00)81648-1
  14. Ohta Y, Nogi Y, Miyazaki M, Li Z, and Hatada Y (2004) Enzymatic properties and nucelotide and amino acid sequences of a thermostable $\beta$-agarase from the novel marine isolate, JAM-A94. Biosci Biotechnol Biochem 68, 1073-1081 https://doi.org/10.1271/bbb.68.1073
  15. Ohta Y, Hatada YY, Miyazaki M, Nogi Y, Ito S, and Horikoshi K (2005) Purification and characterization of a novel $\alpha$-agarase from a Thalassomonas sp. Curr Microbiol 50, 212-216 https://doi.org/10.1007/s00284-004-4435-z
  16. Somogyi M (1952) Notes in sugar determination. J Biol Chem 195, 19-23
  17. Stosz SK, Weiner MR, and Coyne EV (1996) Agarase enzyme system from Alteromonas strain 2-40. Biotechnol Adv 14, 356-360
  18. Sugano Y, Nagae H, and Inagaki K (1995) Production and characteristics of some new $\beta$-agarases from a marine bacterium, Vibrio sp. strain JT0107. J Ferment Bioeng 79, 549-554 https://doi.org/10.1016/0922-338X(95)94746-E
  19. Suzuki H, Sawai Y, and Suzuki T (2003) Purification and characterization of an extracellular $\beta$-agarase from Bacillus sp. MK03. J Bioscien Bioeng 95, 328-334 https://doi.org/10.1016/S1389-1723(03)80063-4
  20. Tao X, Jing W, Kim KS, Yu Z, and Lee YC (2008) Cloning, expression and characterization of $\beta$-agarase gene from a marine bacterium, Pseudoalteromonas sp. JT-6. Kor J Life Science 18, 625-630 https://doi.org/10.5352/JLS.2008.18.5.625
  21. Van der Meulen HJ and Harder DC (1975) Production and characterization of the agarase of Cytophaga flevensis. Antonie van Leeuwenhoek. J Microbiol 41, 431-447
  22. Young KS, Bhattacharjee SS, and Yaphe W (1978) Enzymic cleavage of the α-linkages in agarose, to yield agarooligosaccharide. Carbohydr Res 66, 207-211 https://doi.org/10.1016/S0008-6215(00)83253-X

Cited by

  1. Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1273
  2. Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2 vol.26, pp.2, 2016, https://doi.org/10.5352/JLS.2016.26.2.198
  3. Comparison of Dry Medium Culture Plates for Mesophilic Aerobic Bacteria in Milk, Ice Cream, Ham, and Codfish Fillet Products vol.18, pp.4, 2013, https://doi.org/10.3746/pnf.2013.18.4.269
  4. 신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사 vol.44, pp.2, 2009, https://doi.org/10.4014/mbl.1511.11007
  5. 다양한 환경에서의 효율적 녹조 저감을 위한 Naphthquinone 물질의 담체화 기술 개발 및 이에 따른 생태계 변화 모니터링 vol.34, pp.4, 2009, https://doi.org/10.11626/kjeb.2016.34.4.281
  6. 한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명 vol.28, pp.9, 2018, https://doi.org/10.5352/jls.2018.28.9.1056
  7. 해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명 vol.29, pp.11, 2009, https://doi.org/10.5352/jls.2019.29.11.1173