
새로운 무손실 유니버셜 데이터 압축 기법 285

새로운 무손실 유니버셜 데이터 압축 기법
논 문

58P-3-8

A New Method of Lossless Universal Data Compression

김 성 수
✝
․이 해 기

*

(Sung-Soo Kim․Hae-Kee Lee)

Abstract - In this paper, we propose a new algorithm that improves the lossless data compression rate. The proposed

algorithm lessens the redundancy and improves the compression rate evolutionarily around 40 up to 80 percentile

depending on the characteristics of binary images used for compression. In order to demonstrate the superiority of the

proposed method, the comparison between the proposed method and the LZ78 (LZ77) is demonstrated through

experimental results theoretical analysis.

Key Words : Lossless, Data Compression, Binary Image Compression

✝
 교신저자, 정회원 : 충북대학교 전기공학과 교수․공박

*
 정 회 원 : 충청대학 전기전자학부 교수․공박

E-mail: sungkim@chungbuk.ac.kr

 접수일자 : 2009년 5월 15일

 최종완료 : 2009년 6월 11일

1. Introduction

The exploration of data created in the recent decades

has brought us the need of efficient data procession in

various areas, especially in the digital communications

and signal processing areas. Coming into the age of

information, the importance of information becomes too

much important to be emphasized. The expansion of data

size has been the monstrous huddle to overcome for

communications even though the technology of coding

methods in the source and the channel has been

developed in great amount, which still one of the most

desperate subjects to be resolved [1-3].

The technologies that are developed so far may be

categorized in two prospects, such as the lossless

universal data compression and the lossy data

compression. For the purpose of applications, the

approximation of data is employed to compress the data

of various forms. JPEG is one of the most well known

lossy data compression method. However, data of text

documents that need complete recovery require the

lossless codes [4, 5]. In order to overcome this problem,

several compressing techniques, such as Huffman-based

codes, have been studied for decades. Universal lossless

data compression is the codes that performs without the

information on the statistics of the system. The proposed

universal binary image data compression method is

different new universal codes since Lempel-Ziv's

proposal. There are several different universal lossless

codes for binary images such as the arithmetic code and

the structured grammar-based code. The structured

grammar-based code consists of the two stage. The first

stage transforms the original data into the

grammar-based data, The second stage compresses the

transformed data using arithmetic codes [6, 7]. Then

through the overall process, the data is transformed from

the stationary ergodic data source to the lossless

universal codes. In this paper, a structured

grammar-based lossless data compression algorithm is

mentioned in Section 2 and a new method of the lossless

code for binary images with revising, which is developed

based on the conventional universal compression and the

property of multi-layer methods, is proposed to resolve

the redundancy like Lempel-Ziv's method in Section 3.

Section 4 describes the modified grammar-based

universal algorithm theoretically by introducing the

techniques and properties of proposed method. The

superiority of the proposed method is presented through

the theoretical analysis and simulations in Section 5

followed by conclusions in Section 6.

2. A lossless universal data compression

 Great amount of work has accomplished on the

universal lossless source codes (ULSC) which was

initiated in the late of 1960's. Lempel-Ziv, which was

proposed in the late 1970's, is one of the ULSC's that

has been widely used in various applications. Lately, the

ULSC that uses grammar-based transformation scheme

was proposed by E. Yang and J. Kieffer. The ULSC

전기학회논문지 58P권 3호 2009년 9월

286

using grammar-based transformation compresses source

data in the form of a string  through the grammar, ,

that consists of production rules. Fig. 1 shows the

structure of the encoder that employes the ULSC with

grammar-based as a preprocessing.

Grammar
Transform

Grammar
Encoder

  

Fig. 1 Structure of grammar-base code encoding.

A data string  is transformed via the grammar

obtaining a transformed source  , and it becomes a

binary code   through encoding process. The actual

compression is carried out on the transformed data string

 instead of  itself. Here the grammar  is chosen to

admissible such that it satisfy      . The set of

the different symbols,  , is arranged by the

production rule in the order of left to right following the

grammar that is independent of the data contents where

reduction rule is suggested to obtain the effective

compression. Some of the grammar-based transformations

are Lempel-Ziv and bisection. As a criterion of the

effectiveness of grammar-based transformed codes

→ is theoretically analyzed by the upper bound with

maximum piecewise redundancy. In this paper, in addition

to the rules for compression [7, 8], the additional five

rules for better compression are added to yield the

SEQUITUR algorithm [9, 10, 11] that is different from

the longest matching substring algorithm and the

conventional SQUITUR algorithm. Also, as one of the

lossless data compression codes using the classification

methods based on the pattern matching, the multi-level

pattern matching (MPM) was introduced recently by J.

Kieffer and E. Yang, whose redundancy,    for

the data of length , is improved compared to previously

developed codes. In this paper, we have proposed a new

codes that has superior redundancy per sample by

modifying the grammar based codes with the constraints

of structure in the encoding procedure.

3. A new lossless data compression codes

The proposed new lossless data compression codes

minimize the redundancy so that we can maximize the

compression rates. In Fig.2 and 3, the block diagram of

encoding and decoding is described where the information

on the code tree is obtained by top to down by bisection.

Some of the terminologies are described below.

A code tree for a string  is constructed by

bi-sectioning the string as described in [7], which is

called the reduction rule. Each partitioned string is

defined as a symbol where the collection of the same

length symbols constructs a level, such that ordering the

elements of a set at each level constructs branches of a

tree. The process of compression is established by

eliminating the same symbols that appears repeatedly and

just using the index of symbols. The main part of

encoding can be described as the strategy that how we

represent the symbols by the index not by the contents

itself.

For each branch each branch of the code tree is

classified into two categories: one is a collection of

symbols that do not repeat and the other collection of

symbols that repeat. We assigned 1 to unrepeated

symbols and the first repeated symbol such that the

collection of symbols with index 1 construct a unique

tree called the unique structure of source data. However,

the structured tree built is different in the sense that the

repetition of symbols appear only in the same level while

the structured tree in [7] does not. Another difference of

the proposed codes in this paper is that the encoding

process begins at the level at which the partition occurs

first time not from the beginning of the code tree

information, such that the lowest level of the code tree

adaptively chosen, which is not the case for the

conventional ones [7]. The purpose of choosing the last

level adaptively is to handle the problem that the code

tree uses bits which is longer than the symbols at a

lower level. Since the main point how the compression

occurs strongly depends on the way of representing the

structure information of source data, representing a

shorter length symbols with longer indexing structure

information cannot be used for compression purpose.

The adaptively chosen last level is turned out as the

most effective one. The code tree is assigned as the first

component of encoding process. In addition to this, for

the complete reconstruction using decoder, we need to

keep the first level where the partition first occurs and

the last level. The second stage of encoding builds a

unique code that consists of the total collection of unique

symbols in the form of a binary string. The last three

steps in encoding are the most important part of

encoding. Since the code tree has been constructed by

eliminating those symbols appear more than once from

top to bottom, the eliminated symbol must be indexed in

the shorter length presenting information on the location

and contents. Thus if there exist more than one symbols

that have the same symbols in the same level, we need

to index the order of different symbols with different

number of repeats.

Again, in this step we need to exam whether we can

represent the length of index must be shorter than the

length of symbol to be represented because the purpose

 Trans. KIEE. Vol. 58P, No. 3, SEP., 2009

새로운 무손실 유니버셜 데이터 압축 기법 287

Encoding Stage:(Up to down, Left to right)

 Construct code tree

⇩

Parsing string by bisection

⇩

Eliminating same pattern variables

⇩

Assign tree code bit.

[0: eliminating 1: Unique pattern]

⇩

Bisectional Code Tree completion

⇩

Least Minimum unique

pattern variables checking.

⇩

Construct indexing information bits of

each level's eliminated variables.

Fig. 2 Flowchart of Encoding

Decoding Stage:(Bottom to Up, Left to right)

 Checking of code tree level.

⇩

 Reconstruct each of level code tree.

⇩

 Reconstruct unique pattern variables.

⇩

 Finding eliminated pattern variables by

using indexing information bits.

Fig. 3 Flowchart of Decoding.

of compression is to minimize the redundancy. Therefore,

the process of encoding consists of three parts. The first

part is the head bits that represents the first level of

partition and the last level the partition ends. Decoding

procedure is the reverse of the encoding procedure. The

encoding is carried out from the top to bottom, such that

the decoding is carried out by bottom to top. The initial

level and last level information are used for identifying

the whole structure of levels. Then using the collection of

symbols and the collection of the structure index, we can

reconstruct the original source data. The total process of

encoding in Fig. 2 and decoding is presented in Fig. 3.

4. Modified Structured Grammar-Based Codes for
Universal Lossless Data Compression

In this section we present a new algorithm that

modifies the structured grammar-based codes presented

by Kieffer and Yang for universal lossless data

compression. The aim of this work is set not only to

correct Lemma and Theorems presented previously, but

also to propose a method that finds the bounds of the

largest value   for an arbitrary string of length n

and a finite set  with at least two elements.

Data compression methodology is a great concern to

many researchers for several decades, especially the

lossless data compression has been explored by various

pattern matching schemes [11] ever since the Lempel-Ziv

coding algorithms (LZ77, LZ78 [4, 5])were published in

the late 1970's after L. Davissin's work in 1973 on

universal coding. In 2000, the Universal Lossless Data

Compression (ULDC) algorithm based on pattern

matching called the Multilevel Pattern Matching code

(MPM code) and an efficient ULDC algorithm based on a

greedy sequential grammar transform were proposed by J.

C. Kieffer and E. H. Yang. After two years, in 2002, they

also introduced the structured grammar-based coding

method for ULDC that reduces the maximal

redundancy/sample.

Fundamentally, the structured grammar-based coding

scheme in [7] consists of analysis and synthesis

procedures. In the analysis stage, the context free parsing

scheme is decomposed into the data content and the

structure of parsing tree, which are used in both the

encoding and the decoding procedures. The analysis stage

is regarded as the most important part that constructs

the way of parsing, such that the information of parsing

is mapped into the tree structure.

Consequently, the main subject is how to parse a

string. There are various methods for this purpose such

as Lempel-Zip, MPM, ULDC, and etc.. This subject is

addressed in [7] by introducing the least upper bound of

the maximum length of a distinct parsed string via

Theorem 1 that was proved using Lemma 2. In this

paper, we will correct some mistakes made in Lemma 2

and Theorems proved based on the Lemma 2 in [7].

Corrections on Structured Grammar- Based Codes for

USDC: In this section, the proof of Lemma 2 appeared in

the appendix of [7] will be reviewed and errors, if there

exists any, will be corrected. Besides, the theorems

developed based on Lemma 2 will be discussed also.

Lemma 2, whose definition is presented below, is

전기학회논문지 58P권 3호 2009년 9월

288

introduced as the first step to prove Theorem 1 from 2

which other theorems are derived. The following

statements are Lemma 2 and Theorem 1 presented in [7].

Theorem 1. Let n be any integer 2 and let  be any

representational grammar which represents an -string

of length . Then

 ≦          


 (1)

Lemma 2. Let n be any integer at least 2 and let 

be a finite set with at least two elements. Let    be

the largest number of distinct strings in  which are

of total length at most . Then

  ≦   


 (2)

Fist let us look at the proof of Lemma 2. The authors

[7] seem to tried to derive the least upper bound of the

   using the mathematical inequalities and

equalities. However, unfortunately, the proposed Lemma 2

needs to be fixed for finding the least upper bound of the

  . For the proof of Lemma 2 in [11], they let n be

any integer at least 2 and let  be a finite set with at

least two elements, and let    be the largest

number of distinct strings in  which are of total

length at most . Then,

         ≦           (3)

  


  
   

   
 ≦  

    
  

  
   

  

   


. (4)

From (3), a relation was derived in [11] such as

   
    
  

 ≦   

   
. (5)

They also have proposed

   

  
≦       . (6)

based on the facts

 


  
  

 
 ≧   

 
 (7)

and

 
   

  

  

 
 ≦

  

 
≦    

. (8)

However, the equality on the right side of (5)

obviously does not hold since    . Also, (6) does not

hold either since the equalities in (7) and (8) are not

true. This implies that Lemma 2 fails to satisfy the

requirement of equality for determining the greatest lower

bound (GLB) of  . Specifically, it is unfortunate that

the proof of Lemma 2 was derived in [11] based on

  ≦  ≦   


   



 . (9)

concluding that (9) implies   ≦  



 ,

which is incorrect and implies that Lemma 2 needs to be

modified. In this paper, in order to remove the problems

mentioned previously, we propose a method that modifies

Lemma 2 by setting the interval where   is to be

determined according to the values of  and . By

determining the lower bound and the upper bounds of a

given string of length n and the number of alphabets d

using the relation shown in (4), we can obtain the

information on the bounds of  . In other words the

proposed method extracts information on the bounds of

   from the variables   only. In the first stage,
a proper interval with the least upper and the greatest

lower bounds of   can be obtained by calculating

the length n which is defined as   


 

 with

increasing the integer value of . The procedure stops

when the total length of string n satisfies the following

condition in (10).

 


 



 
 ≦ 


  

 

  

 


. (10)

In the second stage, with the value j obtained in the

previous stage, we can find the interval to which  

belongs by calculating the following relation in (11),

which is the rearranged form of (3).

 
  
 

 ≦    
    
 

 . (11)

From (11), once a proper j is found, then the Least

Upper Bound(LUB) and the Greatest Lower Bound (GLB)

of (11) are set by the following relation

 ≦     (12)

where  ≅  
  
 

 , and  ≅ 
   
  

 Trans. KIEE. Vol. 58P, No. 3, SEP., 2009

새로운 무손실 유니버셜 데이터 압축 기법 289

are integers.

Besides finding the proper bounds for  , from the

procedure mentioned above, we also can justify the

relation between n and d. In [11], the relationship

between n and d is assumed in the form of   ,

which is later removed at the end of the proof of Lemma

2 by the following statement: For  ≦ ≦ , Lemma 2 is

also true because

  ≦  ≦   


   



 . (13)

However this statement is not sufficient to support the

equation in Lemma 2 just because of the misuse of

equality in Lemma 2. If (13) is true, the equality in

Lemma 2 cannot be hold obviously. Suppose that the

relation in (13) is true, then it is necessary to prove that

the rightmost term of (13) can be used as the  . In

addition to this, Since the equality in the right most term

of (13) does not exist, the proof of Theorem 1 is wrong

since the proof of Theorem 1 is established based on

Lemma 2. Specifically, the statement in Theorem 1 [11],

"applying Lemma 2 with ∪  and      , we

obtain  ≦         


," is not true,

such that  ≦           




cannot be true. Hence the Theorems derived from the

Theorem 1 with equality are not true either. In Table 1,

the  and the  of    are obtained as

increasing  until (11) is satisfied for a string of an

arbitrary length . Then the  and  of    

are determined by (3). Therefore, for a string with n, d,

we can obtain the interval which   belongs to. 6

Table 1  and  of     with respect to the

integer  , with   .

 2 3 4 5 6 7 8 9 10 11 12

 6 14 30 62 128 254 510 1022 2046 4094 8190

 13 29 61 125 253 509 1021 2045 4093 8189 16381

As a consequence of this paper, we have examined the

relation between any integer    and a finite set  ,

and found that Lemma 2 does not hold. When we remove

the equality in Lemma 2 in [11], Lemma 2 fails to

provide the least upper bound of   . Therefore, we

claim that the theorems that are developed based on the

Lemma 2 must be restated or redefined. However, in this

paper, we have proposed a new method that determines

the least upper bound and the greatest lower bound of

    , the largest number of distinct strings in  ,

where  denotes the set of all strings  ⋯ in

which  ⋯ are  ≦  ∞ entries from set .

5. Experimental Results

In experiments the compression rate of the proposed

lossless universal compression codes is examined by

comparison between the conventional lossless compression

codes. Several bmp formated binary images of several

different sizes, 256 by 256, 512 by 512, and 1024 by 1024

are used. For the purpose of simulations, the original

images are transformed into binary format, such that the

data format of an 256 by 256 binary image consists of

65536 bits. The two different binary images of 65536 bits

show two different compression rates, 54.2 and 58.2

percentiles compared to the compression rate 13.6

percentile by Gzip, where the compression rates are

improved by 3.98 and 4.28 times compared to the

compression rate of Gzip respectively. The algorithm in

[3] presents that the greedy sequential grammar

transform for memoryless binary source data compression

performs all better than the Unix Compress and Gzip

algorithms on average roughly 26% more efficient than

the Unix Compress and 37% more efficient than Gzip.

However, the algorithm we proposed in this paper

outperforms the conventional compression algorithm as

shown in Table 2, in the range between 180% and 427%

depending on the images used for experiment. As it is

shown in the Table 2, the compression rate depends on

the size of data and the characteristics of data.

Lena boat

sunflower mandrill

 peppers

 Fig. 4 Binary images used in experiments.

전기학회논문지 58P권 3호 2009년 9월

290

Table 2 Compression rates for binary images in Fig. 4.

Test images

Compression
rate of
proposed

algorithm (%)

Compressio
n rate of
Gzip (%)

Improvement
(SJ01 / Gzip)

Lena
(256×256)

54.2 13.6 398.5%

Pepper
(256×256)

58.2 13.6 427.9%

Lena
(512×512) 64.4 33.3 193.4%

Baboon
(512x512)

40.9 20.9 197.7%

BlueBG
(512x512)

68.3 29.6 230.7%

Boat
(512x512) 60.0 33.3 180.2%

Lena
(1024x1024)

84.2 44.6 188.8%

BlueBG
(1024x1024)

80.6 39.0 206.7%

6. Conclusions

Even though the area of lossless universal data compression

attracts great amount of concern by many researchers lately,

There are very limited number of new algorithms after

Lempel-Ziv's work on data compression. One of the newly

proposed algorithms is the structured grammar-based codes

for universal lossless data compression, whose compression

rate is reported the best up to now.

In this paper, we have analyzed the structure

grammar-based codes and found some defects of it. The

great accomplishment of this work is not only just

removing the defects of the existing methods, but also

surprisingly developed a new system for improving the

lossless data compression rate. Base on the results of

analysis, we have proposed a new algorithm, the lossless

universal data compression algorithm with grouping and

bi-sectioning. The proposed code lessens the redundancy

and improves the compression rate evolutionarily, which is

in the range of around 40 up to 80 percentile depending on

the images used for compression. The proposed method

guarantees the optimal compression adaptively depending

on the characteristics of images. Experimental results are

presented in Table 1.2, which shows the compression rates

and the redundancies of the images used. The superiority

of the proposed algorithm is proved and demonstrated by

comparing with the conventional compression methods,

such as LZ78, LZ77, Unix Compress, Gzip, and the

structured grammar-based method through analysis and

simulations for several different images.

References

[1] A. Lempel and J. Ziv, " On the complexity of finite sequences,"

IEEE Trans, Inform. Theory , vol IT-22, pp. 75-81, Jan. 1976.

[2] C. Cook, A. Rosenfeld, and A. Aronson, "Grammatical inference

by hill climbing", Inform, Sci., vol. 10, pp. 59-80, 1997

[3] C. evill-Manning and I. itten, "Identifying hierarchical

structure in sequences: A linear-time algorithm," J.

Artificial Intell. Res., vol. 7, pp. 67-82, 1997

[4] J. Ziv and A. Lempel, "A Universal Algorithm for

Sequential Data Compression," IEEE Trans. on

Information Theory, Vol. IT-23, no. 3, May 1977.

[5] J. Ziv, A. Lempel, "Compression of Individual Sequences

via Variable Rate," IEEE Trans. on Information

Theory, Vol. 24, no. 5, pp. 530-536, Sept., 1978.

[6] Y. Hershkovits and J. Ziv, "On Sliding-Window Universal

Data Compression with Limited Memory," IEEE Trans.

Information Theory, Vol. 44, no.1, Jan 1998.

[7] J. C. Kieffer, E. H. Yang,"Grammar-Based Codes: A

New Class of Universal Lossless Source Codes",

IEEE Trans. on Information Theory, Vol. 46, no. 3,

pp. 737-754, 2000.

[8] E. Yang and J.C. Kieffer, "Efficient Universal Lossless Data

Compression Algorithms Based on a Greedy Sequential

Grammar Transform-Part One : Without Context Models,"

IEEE Trans. on Information Theory, Vol. 46, no. 3, May 2000.

[9] J.C. Kieffer, E. Yang, G.J. Nelsom, and P. Cosman,

"Universal Lossless Compression Via Multilevel

Pattern Matching," IEEE Trans. on Information

Theory, Vol. 46, no. 4, July 2000.

[10] E. Yang , A. Kaltchenko , J.C. Kieffer, "Universal Lossless

Data Compression With Side Information by Using a

Conditional MPM Grammar Transform," IEEE Trans. on

Information Theory, Vol. 47, no. 6, Sep 2001.

[11] J.C. Kieffer and E. Yang, "Structured Grammar-Based codes

for universal lossless data compression," Communication in

Information and Systems, Vol. 2, no.1 , pp. 29-52, June 2002.

저 자 소 개

김 성 수 (金 聖 洙)

1997년 12월 Univ. of Central Florida(공학박

사). 1999년 3월～2001년 8월 우석대학교 전기

공학 조교수. 2001년 9월～현재 충북대학교 전

자정보대학 전기공학과 교수

<관심분야> 디지털통신, 인공지능, 신호처리

이 해 기 (李 海 基)

1981년 충북대학교 공업교육(공학사). 1985년

성균관대학교 전기공학(공학석사). 1990년 성

균관대학교 전기공학 (공학박사). 1991년 ~ 현

재 충청대학 전지전자학부 교수

<관심분야> 신호처리, 전력제어, 씨퀀스제어

