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Abstract - In this paper, we propose a new algorithm that improves the lossless data compression rate. The proposed 

algorithm lessens the redundancy and improves the compression rate evolutionarily around 40 up to 80 percentile 

depending on the characteristics of binary images used for compression. In order to demonstrate the superiority of the 

proposed method, the comparison between the proposed method and the LZ78 (LZ77) is demonstrated through 

experimental results theoretical analysis.
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1. Introduction

The exploration of data created in the recent decades 

has brought us the need of efficient data procession in 

various areas, especially in the digital communications 

and signal processing areas. Coming into the age of 

information, the importance of information becomes too 

much important to be emphasized. The expansion of data 

size has been the monstrous huddle to overcome for 

communications even though the technology of coding 

methods in the source and the channel has been 

developed in great amount, which still one of the most 

desperate subjects to be resolved [1-3].

The technologies that are developed so far may be 

categorized in two prospects, such as the lossless 

universal data compression and the lossy data 

compression. For the purpose of applications, the 

approximation of data is employed to compress the data 

of various forms. JPEG is one of the most well known 

lossy data compression method. However, data of text 

documents that need complete recovery require the 

lossless codes [4, 5]. In order to overcome this problem, 

several compressing techniques, such as Huffman-based 

codes, have been studied for decades. Universal lossless 

data compression is the codes that performs without the 

information on the statistics of the system. The proposed 

universal binary image data compression method is 

different new universal codes since Lempel-Ziv's 

proposal. There are several different universal lossless 

codes for binary images such as the arithmetic code and  

the structured grammar-based code. The structured 

grammar-based code consists of the two stage. The first 

stage transforms the original data into the 

grammar-based data, The second stage compresses the 

transformed data using arithmetic codes [6, 7]. Then 

through the overall process, the data is transformed from 

the stationary ergodic data source to the lossless 

universal codes. In this paper, a structured 

grammar-based lossless data compression algorithm is 

mentioned in Section 2 and a new method of the lossless 

code for binary images with revising, which is developed 

based on the conventional universal compression and the 

property of multi-layer methods, is proposed to resolve 

the redundancy like Lempel-Ziv's method in Section 3. 

Section 4 describes the modified grammar-based 

universal algorithm theoretically by introducing the 

techniques and properties of proposed method. The 

superiority of the proposed method is presented through 

the theoretical analysis and simulations in Section 5 

followed by conclusions in Section 6.

2. A lossless universal data compression

   Great amount of work has accomplished on the 

universal lossless source codes (ULSC) which was 

initiated in the late of 1960's. Lempel-Ziv, which was 

proposed in the late 1970's, is one of the ULSC's that 

has been widely used in various applications. Lately, the 

ULSC that uses grammar-based transformation scheme 

was proposed by E. Yang and J. Kieffer. The ULSC 



전기학회논문지 58P권 3호 2009년 9월

286

using grammar-based transformation compresses source 

data in the form of a string  through the grammar, , 

that consists of production rules. Fig. 1 shows the 

structure of the encoder that employes the ULSC with 

grammar-based as a preprocessing. 

Grammar
Transform

Grammar
Encoder

  

Fig. 1 Structure of grammar-base code encoding.

A data string   is transformed via the grammar 

obtaining a transformed source  , and it becomes a 

binary code    through encoding process. The actual 

compression is carried out on the transformed data string 

  instead of  itself. Here the grammar   is chosen to 

admissible such that it satisfy      . The set of 

the different symbols,  , is arranged by the 

production rule in the order of left to right following the 

grammar that is independent of the data contents where 

reduction rule is suggested to obtain the effective 

compression. Some of the grammar-based transformations 

are Lempel-Ziv and bisection. As a criterion of the 

effectiveness of grammar-based transformed codes 

→  is theoretically analyzed by the upper bound with 

maximum piecewise redundancy. In this paper, in addition 

to the rules for compression [7, 8], the additional five 

rules for better compression are added to yield the 

SEQUITUR algorithm [9, 10, 11] that is different from 

the longest matching substring algorithm and the 

conventional SQUITUR algorithm. Also, as one of the 

lossless data compression codes using the classification 

methods based on the pattern matching, the multi-level 

pattern matching (MPM) was introduced recently by J. 

Kieffer and E. Yang, whose redundancy,     for 

the data of length , is improved compared to previously 

developed codes. In this paper, we have proposed a new 

codes that has superior redundancy per sample by 

modifying the grammar based codes with the constraints 

of structure in the encoding procedure.

3. A new lossless data compression codes

The proposed new lossless data compression codes 

minimize the redundancy so that we can maximize the 

compression rates. In Fig.2 and 3, the block diagram of 

encoding and decoding is described where the information 

on the code tree is obtained by top to down by bisection. 

Some of the terminologies are described below. 

A code tree for a string  is constructed by 

bi-sectioning the string as described in [7], which is 

called the reduction rule. Each partitioned string is 

defined as a symbol where the collection of the same 

length symbols constructs a level, such that ordering the 

elements of a set at each level constructs branches of a 

tree. The process of compression is established by 

eliminating the same symbols that appears repeatedly and 

just using the index of symbols. The main part of 

encoding can be described as the strategy that how we 

represent the symbols by the index not by the contents 

itself.  

For each branch each branch of the code tree is 

classified into two categories: one is a collection of 

symbols that do not repeat and the other collection of 

symbols that repeat.  We assigned 1 to unrepeated 

symbols and the first repeated symbol such that the 

collection of symbols with index 1 construct a unique 

tree called the unique structure of source data.  However, 

the structured tree built is different in the sense that the 

repetition of symbols appear only in the same level while 

the structured tree in [7] does not. Another difference of 

the proposed codes in this paper is that the encoding 

process begins at the level at which the partition occurs 

first time not from the beginning of the code tree 

information, such that the lowest level of the code tree 

adaptively chosen, which is not the case for the 

conventional ones [7]. The purpose of choosing the last 

level adaptively is to handle the problem that the code 

tree uses bits which is longer than the symbols at a 

lower level. Since the main point how the compression 

occurs strongly depends on the way of representing the 

structure information of source data, representing a 

shorter length symbols with longer indexing structure 

information  cannot be used for compression purpose. 

The adaptively chosen last level is turned out as the 

most effective one. The code tree is assigned as the first 

component of encoding process. In addition to this, for 

the complete reconstruction using decoder, we need to 

keep the first level where the partition first occurs and 

the last level. The second stage of encoding builds a 

unique code that consists of the total collection of unique 

symbols in the form of a binary string. The last three 

steps in encoding are the most important part of 

encoding. Since the code tree has been constructed by 

eliminating those symbols appear more than once from 

top to bottom, the eliminated symbol must be indexed in 

the shorter length presenting information on the location 

and contents. Thus if there exist more than one symbols 

that have the same symbols in the same level, we need 

to index the order of different symbols with different 

number of repeats. 

Again, in this step we need to exam whether we can 

represent the length of index must be shorter than the 

length of symbol to be represented because the purpose 
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Encoding Stage:(Up to down, Left to right)

 Construct code tree 

⇩

Parsing string by bisection   

⇩

Eliminating same pattern variables

⇩

Assign tree code bit.  

[0: eliminating 1: Unique pattern]

⇩

Bisectional Code Tree completion

⇩

Least Minimum unique 

pattern variables checking.

⇩

Construct indexing information bits of 

each level's eliminated variables.  

Fig. 2 Flowchart of Encoding

Decoding Stage:(Bottom to Up, Left to right)

 Checking of code tree level.  

⇩

 Reconstruct each of level code tree. 

⇩

 Reconstruct unique pattern variables. 

⇩

 Finding eliminated pattern variables by 

using indexing information bits. 

Fig. 3 Flowchart of Decoding.

of compression is to minimize the redundancy. Therefore, 

the process of encoding consists of three parts. The first 

part is the head bits that represents the first level of 

partition and the last level the partition ends. Decoding 

procedure is the reverse of the encoding procedure. The 

encoding is carried out from the top to bottom, such that 

the decoding is carried out by bottom to top. The initial 

level and last level information are used for identifying 

the whole structure of levels. Then using the collection of 

symbols and the collection of the structure index, we can 

reconstruct the original source data. The total process of 

encoding in Fig. 2 and decoding is presented in Fig. 3. 

4. Modified Structured Grammar-Based Codes for 
Universal Lossless Data Compression 

In this section we present a new algorithm that 

modifies the structured grammar-based codes presented 

by Kieffer and Yang for universal lossless data 

compression. The aim of this work is set not only to 

correct Lemma and Theorems presented previously, but 

also to propose a method that finds the bounds of the 

largest value    for an arbitrary string of length n 

and a finite set   with at least two elements.

Data compression methodology is a great concern to 

many researchers for several decades, especially the 

lossless data compression has been explored by various 

pattern matching schemes [11] ever since the Lempel-Ziv 

coding algorithms (LZ77, LZ78 [4, 5])were published in 

the late 1970's after L. Davissin's work in 1973 on 

universal coding. In 2000, the Universal Lossless Data 

Compression (ULDC) algorithm based on pattern 

matching called the Multilevel Pattern Matching code 

(MPM code) and an efficient ULDC algorithm based on a 

greedy sequential grammar transform were proposed by J. 

C. Kieffer and E. H. Yang. After two years, in 2002, they 

also introduced the structured grammar-based coding 

method for ULDC that reduces the maximal 

redundancy/sample.

Fundamentally, the structured grammar-based coding 

scheme in [7] consists of analysis and synthesis 

procedures. In the analysis stage, the context free parsing 

scheme is decomposed into the data content and the 

structure of parsing tree, which are used in both the 

encoding and the decoding procedures. The analysis stage 

is regarded as the most important part that constructs 

the way of parsing, such that the information of parsing 

is mapped into the tree structure.

Consequently, the main subject is how to parse a 

string. There are various methods for this purpose such 

as Lempel-Zip, MPM, ULDC, and etc.. This subject is 

addressed in [7] by introducing the least upper bound of 

the maximum length of a distinct parsed string via 

Theorem 1 that was proved using Lemma 2. In this 

paper, we will correct some mistakes made in Lemma 2 

and Theorems proved based on the Lemma 2 in [7].

Corrections on Structured Grammar- Based Codes for 

USDC: In this section, the proof of Lemma 2 appeared in 

the appendix of [7] will be reviewed and errors, if there 

exists any, will be corrected. Besides, the theorems 

developed based on Lemma 2 will be discussed also. 

Lemma 2, whose definition is presented below, is 
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introduced as the first step to prove Theorem 1 from 2 

which other theorems are derived. The following 

statements are Lemma 2 and Theorem 1 presented in [7].

Theorem 1. Let n be any integer 2 and let   be any 

representational grammar which represents an -string 

of length . Then

 ≦          


         (1)

Lemma 2. Let n be any integer at least 2 and let   

be a finite set with at least two elements. Let     be 

the largest number of distinct strings in   which are 

of total length at most . Then

  ≦   


             (2)

Fist let us look at the proof of Lemma 2. The authors 

[7] seem to tried to derive the least upper bound of the

     using the mathematical inequalities and 

equalities. However, unfortunately, the proposed Lemma 2 

needs to be fixed for finding the least upper bound of the 

  . For the proof of Lemma 2 in [11], they let n be 

any integer at least 2 and let   be a finite set with at 

least two elements, and let     be the largest 

number of distinct strings in   which are of total 

length at most . Then,

         ≦                (3)

  


  
   

   
 ≦  

    
  

  
   

  

   


.             (4)

From (3), a relation was derived in [11] such as

   
    
  

 ≦   

   
.       (5)

They also have proposed

   

  
≦       .             (6)

based on the facts

 


  
  

 
 ≧   

 
           (7)

and

 
   

  

  

 
 ≦

  

 
≦    

.            (8)

However, the equality on the right side of (5) 

obviously does not hold since    . Also, (6) does not 

hold either since the equalities in (7) and (8) are not 

true. This implies that Lemma 2 fails to satisfy the 

requirement of equality for determining the greatest lower 

bound (GLB) of  . Specifically, it is unfortunate that 

the proof of Lemma 2 was derived in [11] based on

  ≦  ≦   


   



 .     (9) 

concluding that (9) implies   ≦  



 , 

which is incorrect and implies that Lemma 2 needs to be 

modified. In this paper, in order to remove the problems 

mentioned previously, we propose a method that modifies 

Lemma 2 by setting the interval where    is to be 

determined according to the values of   and . By 

determining the lower bound and the upper bounds of a 

given string of length n and the number of alphabets d 

using the relation shown in (4), we can obtain the 

information on the bounds of  . In other words the 

proposed method extracts information on the bounds of 

    from the variables    only. In the first stage, 
a proper interval with the least upper and the greatest 

lower bounds of    can be obtained by calculating 

the length n which is defined as   


 

  with 

increasing the integer value of . The procedure stops 

when the total length of string n satisfies the following 

condition in (10).

 


 



 
 ≦ 


  

 

  

 


.       (10)

In the second stage, with the value j obtained in the 

previous stage, we can find the interval to which    

belongs by calculating the following relation in (11), 

which is the rearranged form of (3).

 
  
 

 ≦    
    
 

 .        (11)

From (11), once a proper j is found, then the Least 

Upper Bound(LUB) and the Greatest Lower Bound (GLB) 

of (11) are set by the following relation

 ≦                   (12) 

where  ≅  
  
 

 , and  ≅ 
   
  
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are integers.

Besides finding the proper bounds for  , from the 

procedure mentioned above, we also can justify the 

relation between n and d. In [11], the relationship 

between n and d is assumed in the form of   , 

which is later removed at the end of the proof of Lemma 

2 by the following statement: For  ≦ ≦ , Lemma 2 is 

also true because

  ≦  ≦   


   



 . (13)

However this statement is not sufficient to support the 

equation in Lemma 2 just because of the misuse of 

equality in Lemma 2. If (13) is true, the equality in 

Lemma 2 cannot be hold obviously. Suppose that the 

relation in (13) is true, then it is necessary to prove that 

the rightmost term of (13) can be used as the  . In 

addition to this, Since the equality in the right most term 

of (13) does not exist, the proof of Theorem 1 is wrong 

since the proof of Theorem 1 is established based on 

Lemma 2. Specifically, the statement in Theorem 1 [11], 

"applying Lemma 2 with ∪   and      , we 

obtain  ≦         


," is not true,

such that  ≦           


  

cannot be true. Hence the Theorems derived from the 

Theorem 1 with equality are not true either. In Table 1, 

the   and the   of     are obtained as 

increasing   until (11) is satisfied for a string of an 

arbitrary length . Then the   and   of      

are determined by (3). Therefore, for a string with n, d, 

we can obtain the interval which   belongs to. 6

Table 1   and   of      with respect to the 

integer   , with   .

 2 3 4 5 6 7 8 9 10 11 12

 6 14 30 62 128 254 510 1022 2046 4094 8190

 13 29 61 125 253 509 1021 2045 4093 8189 16381

As a consequence of this paper, we have examined the 

relation between any integer     and a finite set  , 

and found that Lemma 2 does not hold. When we remove 

the equality in Lemma 2 in [11], Lemma 2 fails to 

provide the least upper bound of   . Therefore, we 

claim that the theorems that are developed based on the 

Lemma 2 must be restated or redefined. However, in this 

paper, we have proposed a new method that determines 

the least upper bound and the greatest lower bound of 

    , the largest number of distinct strings in  , 

where   denotes the set of all strings  ⋯   in 

which  ⋯  are  ≦  ∞  entries from set .

5. Experimental Results

In experiments the compression rate of the proposed 

lossless universal compression codes is examined by 

comparison between the conventional lossless compression 

codes. Several bmp formated binary images of several 

different sizes, 256 by 256, 512 by 512, and 1024 by 1024 

are used. For the purpose of simulations, the original 

images are transformed into binary format, such that the 

data format of an 256 by 256 binary image consists of 

65536 bits. The two different binary images of 65536 bits 

show two different compression rates, 54.2 and 58.2 

percentiles compared to the compression rate 13.6 

percentile by Gzip, where the compression rates are 

improved by 3.98 and 4.28 times compared to the 

compression rate of Gzip respectively. The algorithm in 

[3] presents that the greedy sequential grammar 

transform for memoryless binary source data compression 

performs all better than the Unix Compress and Gzip 

algorithms on average roughly 26% more efficient than 

the Unix Compress and 37% more efficient than Gzip. 

However, the algorithm we proposed in this paper 

outperforms the conventional compression algorithm as 

shown in Table 2, in the range between 180% and 427% 

depending on the images used for experiment. As it is 

shown in the Table 2, the compression rate depends on 

the size of data and the characteristics of data.

    

Lena                  boat

  

sunflower             mandrill  

 peppers

 Fig. 4 Binary images used in experiments.
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Table 2 Compression rates for binary images in Fig. 4.

Test images

Compression 
rate of 
proposed 

algorithm (%)

Compressio
n rate of 
Gzip (%)

Improvement 
(SJ01 / Gzip) 

Lena 
(256×256)

54.2 13.6 398.5%

Pepper 
(256×256)

58.2 13.6 427.9%

Lena 
(512×512) 64.4 33.3 193.4%

Baboon 
(512x512)

40.9 20.9 197.7%

BlueBG 
(512x512)

68.3 29.6 230.7%

Boat 
(512x512) 60.0 33.3 180.2%

Lena 
(1024x1024)

84.2 44.6 188.8%

BlueBG 
(1024x1024)

80.6 39.0 206.7%

 

6. Conclusions

Even though the area of lossless universal data compression 

attracts great amount of concern by many researchers lately, 

There are very limited number of new algorithms after 

Lempel-Ziv's work on data compression. One of the newly 

proposed algorithms is the structured grammar-based codes 

for universal lossless data compression, whose compression 

rate is reported the best up to now.

In this paper, we have analyzed the structure 

grammar-based codes and found some defects of it. The 

great accomplishment of this work is not only just 

removing the defects of the existing methods, but also 

surprisingly developed a new system for improving the 

lossless data compression rate. Base on the results of 

analysis, we have proposed a new algorithm, the lossless 

universal data compression algorithm with grouping and 

bi-sectioning. The proposed code lessens the redundancy 

and improves the compression rate evolutionarily, which is 

in the range of around 40 up to 80 percentile depending on 

the images used for compression. The proposed method 

guarantees the optimal compression adaptively depending 

on the characteristics of images. Experimental results are 

presented in Table 1.2, which shows the compression rates 

and the redundancies of the images used. The superiority 

of the proposed algorithm is proved and demonstrated by 

comparing with the conventional compression methods, 

such as LZ78, LZ77, Unix Compress, Gzip, and the 

structured grammar-based method through analysis and 

simulations for several different images.
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