DOI QR코드

DOI QR Code

능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept

  • ;
  • 유영현 (건국대학교 항공우주정보시스템공학과 대학원) ;
  • 정성남 (건국대학교 항공우주정보시스템공학과)
  • 발행 : 2009.02.01

초록

능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 헬리콥터 진동억제에 대한 수치연구를 수행하였다. 허브에 작용하는 진동하중 억제를 위해 복합재료 블레이드의 탄성 연계와 함께 압전 소재의 전단변형 메커니즘을 이용하였다. 로터 블레이드는 표면에 압전 작동기를 부착한 박벽 상자형 단면을 갖는 복합재료 보로 모델링하였다. 회전익에 대한 지배 운동방정식은 Hamilton 원리를 이용하여 구성하였고, 공력하중은 자유후류모델을 포함하는 비정상 공력 이론을 이용하여 구했다. 다양한 탄성연계 적층과 능동 작동기를 부착한 복합재료 블레이드에 대해 허브진동 하중 특성을 고찰하였다. 수치해석 결과 최적 제어 알고리듬을 적용하여 $N_b$/rev 진동하중을 대폭 줄일 수 있음을 보였다.

In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

키워드

참고문헌

  1. Chopra, I., "Status of Application of Smart Structures Technology to Rotorcraft Systems", Journal of the American Helicopter Society, Vol. 45, 2000, pp. 228-252. https://doi.org/10.4050/JAHS.45.228
  2. Sun, C. and Zhang, X., "Use of Thickness-Shear Mode in Adaptive Sandwich Structures", Smart Materials and Structures, Vol. 4, 1995, pp. 202-206. https://doi.org/10.1088/0964-1726/4/3/007
  3. Benjeddou, A., Trinda de, M. and Ohayon, R., "Piezoelectric Actuation Mmechanisms for Intelligent Sandwich Structures" Smart Materials and Structures, Vol. 9, 1999, pp. 328-335. https://doi.org/10.1088/0964-1726/9/3/313
  4. Thakkar, D., and Ganguli, R., "Helicopter Vibration Reduction in Forward Flight with Induced-Shear Based Piezoceramic Actuation", Smart Materials and Structures, Vol. 13, 2004, pp. 599-608. https://doi.org/10.1088/0964-1726/13/3/019
  5. Thakkar, D., and Ganguli, R., "Use of Single Crystal and Soft Piezoceramics for Alleviation of Flow Separation Induced Vibration in a Smart Helicopter Rotor", Smart Materials and Structures, Vol. 15, 2006, pp. 331-341. https://doi.org/10.1088/0964-1726/15/2/013
  6. Jung, S. N., Nagaraj, V. T., and Chopra, I., "Assessment of Composite Rotor Blade Modeling Techniques", Journal of the American Helicopter Society, Vol. 44, No. 3, 1999, pp. 188-205. https://doi.org/10.4050/JAHS.44.188
  7. Jung, S. N., Kim, K. N., and Kim, S. J., "Forward Flight Stability Characteristics for Composite Hingeless Rotors with Transverse Shear Deformation", AIAA Journal, Vol. 40, 2002, pp. 1717-1725. https://doi.org/10.2514/2.1875
  8. 이주영, 박일주, 정성남, “무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구”, 한국항공우주학회지, 제32권 제7호, 2004, pp. 29-36.
  9. Bao, J., Nagaraj, V. T., Chopra, I. and Bernhard, A. P. F., "Development of Mach Scale Rotors with Tailored Composite Coupling for Vibration Reduction", Journal of Aircraft, Vol. 43, 2006, pp. 922-931. https://doi.org/10.2514/1.15484
  10. Leishm an, J. c, and Beddoes, T. S., "A Semi-Empirical Model for Dynamic Stall", Journal of American Helicopter 1989, pp. 3-17.
  11. Bagai, A., and Leishman, J. C.. "Rotor Free-Wake Modeling using a Pseudo-Implicit Technique including Comparisons with Experiment", Journal of American Helicopter Society, Vol. 40, 1995, pp. 29-41. https://doi.org/10.4050/JAHS.40.29
  12. Zhang, J., "Active-Passive Hybrid Optimization of Rotor Blades with Trailingedge Flaps", Ph.D. Dissertation, Penn State, 2001.
  13. Smith, E. C, "Vibration and Flutter of Stiff-Inplane Elastically Tailored Composite Rotor Blades", Mathematical and Computer Modeling, Vol. 19, 1994, pp. 27-45.
  14. Bousman, W. c., "The Response of Helicopter Rotors to Vibratory Airload," AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, Texas, Nov . 13-14, 1989.