DOI QR코드

DOI QR Code

Detached Eddy Simulation of Base Flow in Supersonic Mainstream

초음속 유동에서 기저유동의 Detached Eddy Simulation

  • 신재렬 (부산대학교 항공우주공학과 대학원) ;
  • 문성영 (부산대학교 항공우주공학과 대학원) ;
  • 원수희 (서울대학교 기계항공공학부 대학원, 부산대학교 부품소재산학협력연구소) ;
  • 최정열 (부산대학교 항공우주공학과)
  • Published : 2009.10.01

Abstract

DES method is applied to an axisymmetric base flow at supersonic mainstream. The model is based on the Spalart-Allmaras (S-A) turbulence model in the RANS mode, and is based on the subgrid scale model in the Large-eddy simulation (LES) mode. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology which is less expensive than LES. Flow properties at the edge of base, such as boundary layer thickness, momentum thickness and skin fraction are compared with Dutton et al [experimental data to proper prediction of base flowfiled. From the present results, The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region and small eddy motions inside the recirculating region. Moreover, The present results of using an empirical constant $C_{DES}$ of 1.2 shows good agreement with experimental data than conventional empirical constant $C_{DES}$ of 0.65.

초음속 유동장 내의 축대칭 기저유동에 DES 기법을 적용하였다. 이 기법은 RANS 모드에서는 Spalart-Allmaras (S-A) 난류 모델을 사용하고, Large-eddy simulation (LES) 모드에서는 부격자 모델을 기반으로 하고 있다. LES 보다 비교적 적은 비용을 갖는 DES 기법을 사용하여 기저 유동장과 기저 압력을 정교게 예측할 수 있었다. 기저유동의 정확한 예측을 위해 경계층 두께, 운동량 두께, 표면마찰과 같은 기저 가장자리 유동 물성치를 Dutton 등의 실험과 비교하였다. DES는 하류영역에서의 전단층 말림, 큰 에디 운동, 재순환영역 내의 작은 에디 운동 같은 비정상 난류 운동의 물리적 현상을 잘 모사 하였다. 또한, 경험상수 $C_{DES}$ 1.2를 사용한 현재 결과가 일반적인 경험상수 $C_{DES}$ 0.65에 비해 실험과 잘 일치함을 보여준다.

Keywords

References

  1. Herrin, J.L., and Dutton, C.J., “Supersonic Near-Wake Afterbody Boattailing Effects on Axisymmetric Bodies”, Journal of Spacecraft and Rockets, Vol. 31, No. 6, pp. 1021-1038, 1994. https://doi.org/10.2514/3.26553
  2. Mathur, T., and Dutton, C.J., “Velocity and Turbulence Measurements in a Supersonic Base Flow with Mass Bleed”, AIAA Journal, Vol. 34, No. 6, pp. 1153-1159, 1996. https://doi.org/10.2514/3.13206
  3. Mathur, T., and Dutton, C.J., “Base Bleed Experiments with a Cylindrical Afterbody in Supersonic Flow”, Journal of Spacecraft and Rockets, Vol. 33, No. 1, pp. 30-37, 1996. https://doi.org/10.2514/3.55703
  4. Sandberg, R.D., and Fasel, H., “Direct Numerical Simulations of Transitional Supersonic Base Flows”, AIAA Paper No. 2005-98, 2005.
  5. Fureby, C., Nilsson, Y., and Andersson, K., “Large Eddy Simulation of Supersonic Base Flow”, AIAA Paper No. 99-0426, 1999.
  6. Forsythe, J.R., Hoffmann, K.A., Cummings, R.M., and Squires, K. D., “Detached Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow”, Journal of Fluids Engineering, Vol. 124, pp. 911-923, 2002. https://doi.org/10.1115/1.1517572
  7. Baurle, R.A., and Tam, C.-J., Edwards, J.R., and Hassan, H. A., “Hybrid Simulation Approach for Cavity Flows: Blending, Algorithm and Boundary Treatment Issues”, AIAA Journal, Vol. 41, No. 8, pp. 1463-1480, 2003. https://doi.org/10.2514/2.2129
  8. Kawai, S., Fujii, K., “Computational Study of Supersonic Base Flow Using Hybrid Turbulence Methodology”, AIAA Journal, Vol. 43, No. 6, pp. 1265-1275, 2005. https://doi.org/10.2514/1.13690
  9. Simon, F., Deck, S., and Guillen, P., and Sagaut, P., “Reynolds-Averaged Navier–Stokes/Large-Eddy Simulations of Supersonic Base Flow”, AIAA Journal, Vol. 44, No. 11, pp. 2578-2590, 2006. https://doi.org/10.2514/1.21366
  10. Spalart, P.R., Deck, S., Shur, M.L., Squires, K. D., Strelets, M.K., and Travin, A.K., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., Vol. 20, pp. 181-195, 2006. https://doi.org/10.1007/s00162-006-0015-0
  11. Shur, M., Spalart, P.R., Strelets, M. and Travin, A., “Detached-eddy simulation of an airfoil at high angle of attack”, 4th International Symposium on Engineering Turbulence Modelling and Measurements, Elsevier Science, Amsterdam, pp. 669–678, 1999. https://doi.org/10.1002/fld.1309
  12. Spalart, P.R., Allmaras, S.R., “A One Equation Turbulence Model for Aerodynamic Flows”, AIAA Paper No. 92-0439, 1992.
  13. Yamamoto, S., and Daiguji, H., “Higher order accurate Upwind Schemes for Solving the Compressible Euler and Navier-Stokes Equations”, Computers and Fluids, Vol. 22, No. 2/3, pp. 259-270, 1993. https://doi.org/10.1016/0045-7930(93)90058-H
  14. Kim, K.H., Kim, C., “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process”, Journal of Computational Physics, Vol. 208, pp. 570-615, 2005. https://doi.org/10.1016/j.jcp.2005.02.022
  15. Rumsey, C.L., Sanetrik, M.D., Biedron, R.T., Melson, N.D., Parlette, E.B., “Efficiency and Accuracy of Time-Accurate Turbulent Navier-Stokes Computations”, Computers & Fluids, Vol. 25, No. 2, pp. 217-236, 1996. https://doi.org/10.1016/0045-7930(95)00043-7
  16. Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, Inc., 1993.
  17. Georgiadis, N.J., Alexander, J.I.-D. and Reshotko, E., “Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations”, NASA/TM-2991-21076, 2001.
  18. Chuang, C.C., and Chieng, C.C., “Supersonic Base Flow Computation Using Higher-Order Closure Turbulence Models”, Journal of Spacecraft and Rockets, Vol. 33, No. 3, pp. 374-380, 1996. https://doi.org/10.2514/3.26770
  19. Jeong, J., and Hussain, F., “On the Identification of a Vortex”, Journal of Fluid Mechanics, Vol. 285, pp. 69-94, 1995. https://doi.org/10.1017/S0022112095000462
  20. Shin, J.-R., Cho, D.-R., Won, S.-H., Choi, J.-Y., ”Hybrid RANS/LES Study of Base-Bleed Flows in Supersonic Mainstream”, AIAA Paper No. 2008-2588, 2008.
  21. 신재렬, 원수희, 최정열, “초음속 유동장에서 기저 유동의 Detached Eddy Simulation”, 2008년도 한국전산유체공학회 추계학술대회, pp. 104-110, 2008.
  22. Constantinescu, G.S., Squires, K.D., “LES and DES Investigations of Turbulent Flow Over a Sphere”, AIAA Paper No. 2000-540, 2000.
  23. Shur, M., Strelets, M., Zaikov, L., Gulyaev, A., Kozlov, V., and Secundov, A., “Comparative Numerical Testing of One- and Two-Equation Turbulence Models for Flows with Separation and Reattachment”, AIAA Paper No. 95-0863, 1995.
  24. Scotti, A., and Meneveau, C., Lilly, D.K., “Generalized Smagorinsky Model for Anisotropic Grids”, Phys. Fluids A, Vol. 5, No. 9, pp. 2306-2308, 1990. https://doi.org/10.1063/1.858537

Cited by

  1. Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer vol.44, pp.7, 2016, https://doi.org/10.5139/JKSAS.2016.44.7.593
  2. OPENMP PARALLEL PERFORMANCE OF A CFD CODE ON MULTI-CORE SYSTEMS vol.18, pp.1, 2013, https://doi.org/10.6112/kscfe.2013.18.1.083
  3. Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow vol.38, pp.2, 2010, https://doi.org/10.5139/JKSAS.2010.38.2.099