DOI QR코드

DOI QR Code

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성

  • Kim, Hyung-Kun (Department of Advanced Materials Engineering, Dankook University) ;
  • Lee, Rhim-Youl (Department of Advanced Materials Engineering, Dankook University)
  • 김형균 (단국대학교 신소재공학과) ;
  • 이임렬 (단국대학교 신소재공학과)
  • Published : 2009.04.27

Abstract

Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Keywords

References

  1. X. Li and I. M. Hsing, Electrochimica Acta, 51, 5250 (2006) https://doi.org/10.1016/j.electacta.2006.01.046
  2. W. Chen, J. Zhao, J. Y. Lee and Z. Liu, Mater. Chem. Phys., 91, 124 (2005) https://doi.org/10.1016/j.matchemphys.2004.11.003
  3. W. Li, C. Liang, W. Zhou, J. Qui, Z. Zhou, G. Sun and Q. Xin, J. Phys. Chem. B, 107, 6292 (2003) https://doi.org/10.1021/jp022505c
  4. V. Lordi N. Yao and J. Wei, Chem. Mater., 13, 733 (2001) https://doi.org/10.1021/cm000210a
  5. Z. Q. Tian, S. P. Jiang, Y. M. Liang and P. K. Shen, J. Phys. Chem., B, 110, 5343 (2006) https://doi.org/10.1021/jp056401o
  6. Z. L. Liu, X. H. Lin. J. Y. Lee, W. Zhang, M. Han and L. M. Gan, Langmuir, 18, 4054 (2002) https://doi.org/10.1021/la0116903
  7. R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. O. Xu and T. S. A. Hor, Chem. Mater., 10, 718 (1998) https://doi.org/10.1021/cm970364z
  8. B. Rajesh, K. R. Tampi, J. M. Bonard, N. Xanthopolus, H. J. Mathieu and B. Viswannathan, J. Phys. Chem., B 107, 2701 (2003) https://doi.org/10.1021/jp0219350
  9. S. Ayyappen, R. S. Gopalan, G. N. Subbanna and C. N. R. Rao, J. Mater. Res., 12(2), 398 (1997) https://doi.org/10.1557/JMR.1997.0057
  10. L. K. Kurihara, G. M. Chow and P. E. Schoen, Nanostructured Mater., 5(6), 607 (1995) https://doi.org/10.1016/0965-9773(95)00275-J
  11. F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. T. Elhsissen, Nanostructed Mater., 11 (8), 1277 (1999) https://doi.org/10.1016/S0965-9773(99)00419-5
  12. W. X. Chen, J. Y. Lee and Z. Liu, Mater. Lett., 58, 3166 (2004) https://doi.org/10.1016/j.matlet.2004.06.008
  13. B. Xue, P. Chen, Q. Hang, J. Y. Lin and K. L. Tan, J. Mater. Chem., 11, 2378 (2001) https://doi.org/10.1039/b100618p
  14. R. Q. Yu, L. W. Chen, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. Chan, G. O Xu and T. S. Andyhor, Chem. Mater., 10, 718 (1998) https://doi.org/10.1021/cm970364z
  15. R. Y. Lee, J. Microelectron. Packag., 12(3), 227 (2005)
  16. O. K. Varghese, P. D. Kichamber, D. Cong, K. G. Ong and E. A. Grines, Sens. Actuators, 81, 32 (2001) https://doi.org/10.1016/S0925-4005(01)00923-6
  17. H. K. Kim and R. Y. Lee, J. Microelectron. Packag., 15(4), 101 (2008)

Cited by

  1. Electrochemical Oxidations of Alcohols on Platinum/Carbon Nanotube Composites vol.14, pp.3, 2013, https://doi.org/10.4313/TEEM.2013.14.3.125