DOI QR코드

DOI QR Code

Valuation of Irrigation Water: A Chance-Constrained Programming Approach

확률제약 계획모형법을 이용한 농업용수의 경제적 가치 평가

  • Kwon, Oh-Sang (Dept. of Ag. Economics & Rural Development, Seoul National Univ.) ;
  • Lee, Tae-Ho (Dept. of Ag. Economics & Rural Development, Seoul National Univ.) ;
  • Heo, Jeong-Hoi (Korea Rural Economic Institute)
  • 권오상 (서울대학교 농경제사회학부, 농업생명과학연구원) ;
  • 이태호 (서울대학교 농경제사회학부, 농업생명과학연구원) ;
  • 허정회 (한국농촌경제연구원)
  • Published : 2009.04.30

Abstract

This study estimates the value of irrigation water in Korea using an economic programming model that is constructed with all the resource endowment constraints, technology restrictions and policy variables. The variability and uncertainty of water resource endowment are incorporated into the model through the chance-constrained technique. Solving the profit maximization problems with gradually reduced water endowments, we derive a series of shadow values of irrigation water. It has been found that uncertainty in water supply raises the damage from water loss, and the marginal damage increases in water loss.

본고는 경제적 최적화모형인 확률제약 계획모형법을 이용하여, 농업용수 부존량 감소에 따른 농업이윤의 감소분을 계측하고 이를 통해 농업용수의 경제적 가치를 분석하고자 한다. 이를 위해 국가 전체 농업자원배분을 최적화 모형으로 구축하고, 농업용수를 포함하는 자원부존제약조건과, 각 상품의 가격이 형성되는 시장조건, 국제무역 및 관련정책변수의 영향들을 반영하고, 용수의 경우 그 이용량이 연도별로 불안정할 수 있다는 것까지 반영한다. 농업용수감소량이 농업부문 이윤에 미치는 영향을 시나리오를 주어 분석하면, 농업용수의 톤당 경제적 가치는 $303{\sim}1,093$원/$m^3$의 분포를 가지는 것으로 나타난다. 동일한 양의 용수량이 줄어들더라도 용수의 공급이 불안정할수록 경제적 가치 손실이 크며, 아울러 많은 양의 용수손실이 발생할수록 경제적 손실이 커 용수감소의 한계피해는 용수감소량의 증가 함수인 것으로 파악된다.

Keywords

References

  1. 권오상 (2008a). '농지가격의 결정요인: 다단계 특성가격모형.' 농업경제연구, 한국농업경제학회, 제49권, 제1호, pp. 113-139
  2. 권오상 (2008b). '농지가격의 지역별.농지유형별 변동형태 분석.' 농업경제연구, 한국농업경제학회, 제49권, 제3호, pp. 53-76
  3. 김용택, 김홍상 (1999). '농업용수이용료의 부과기준 설정과 공급원가 분석.' 농촌경제, 한국농촌경제연구원, 제22권, 제4호, pp. 1-20
  4. 김원희, 권오상, 안동환 (2003). '농업용수의 잠재가격분석.' 농업경제연구, 한국농업경제학회, 제44권, 제2호, pp. 153-174
  5. 임재환 (1989). 미곡생산에 있어 최적자원배분에 관한 연구: 물과 비료를 중심으로, 박사학위논문, 서울대학교
  6. 최지현 (1982). 농지개량조합비 결정에 관한 연구, 석사학위논문, 서울대학교
  7. Anderson, J.R., Dillon, J.L., and Hardaker, B. (1977). Agricultural decision analysis. Iowa State University Press, Ames, Iowa
  8. Anderson, R.L. (1961). 'The irrigation water rental market: a case study,' Agricultural economics research. Vol 8, pp. 54-58
  9. Ayer, H.W., Prentzel, J., and Hoyt, P. (1983). 'Estimation of substitution possibilities between water and other production inputs.' American journal of agricultural economics, Vol. 64, No. 1, pp. 149-151
  10. Bash, P.K., and Young, R.A. (1993). The role of the South Platte Tributary Aquifer in northeastern Colorado irrigated agriculture: results of a survey. Colorado Water Resources Research Institute, Fort Collins, Colorado
  11. Charnes, A., and Copper, W.W. (1959). 'Chance constrained programming.' Management science. Vol. 6, No. 1, pp. 73-39 https://doi.org/10.1287/mnsc.6.1.73
  12. Crouter, J. (1987). 'Hedonic estimation applied to a water rights market.' Land economics, Vol. 63, No. 3, pp. 259-269 https://doi.org/10.2307/3146835
  13. Faux, J., and Perry, G.M. (1999). 'Estimating irrigation water value using hedonic price analysis: a case study in Malheur County, Oregon.' Land economics, Vol. 75, pp. 440-452 https://doi.org/10.2307/3147189
  14. Gibbons, D.C. (1986). The economic value of water. Resources for the Future, Washington D.C.
  15. Gouevsky, I. and Maidment, D.R. (1984). 'Agricultural water demands,' in J. Kindler and C. S. Russell eds., Modeling water demands, Academic Press, Orlando, Florida, pp. 101-148
  16. Hatchett, S.A., Horner, G.L. and Howitt R.E., (1991). 'A regional mathematical programming model to assess drainage control policies,' in A. Dinar and D. Zilberman, eds., The economics and management of water and drainage in agriculture, Kluwer Academic Publishers, Boston, Massachusetts, pp. 465-488
  17. Hazell, P.B.R. (1971). 'A linear alternative to quadratic and semivariance programming for farm planning under uncertainty.' American journal of agricultural economics, Vol. 53, pp. 53-62 https://doi.org/10.2307/3180297
  18. Hazell, P.B.R., and Norton, R.D. (1986). Mathematical programming for economic analysis in agriculture, MacMillan Publishing Company, New York, N.Y.
  19. Hazell, P.B.R., Norton, R.D., Parthasarathy, M., and Pomareda, C. (1983). 'The imporatance of risk in agricultural planning models.' in R. D. Norton and L. Solís, eds., The book of CHAC: programming studies for Mexican agriculture, The Johns Hopkins University Press, Baltimore, Maryland, pp. 225-249
  20. Hexem, R.W., and Heady, E.O. (1978). Water production functions for irrigated agriculture. Iowa State University Press, Ames, Iowa
  21. Kelso. M.W., Martin, W.E., and Mack, L.E. (1973). Water supplies and economic growth in an arid environment: an Arizona case study. University of Arizona Press, Tucson, Arizona
  22. Kibzun, A.I., and Kurbakovskiy, V.Y. (1991). 'Guaranteeing approach to solving quantile optimization problems.' Annals of operations research, Vol 30, pp. 81-94 https://doi.org/10.1007/BF02204810
  23. Kibzun, A.I., and Kan, Y.S. (1996). Stochastic programming problems with probability and quantile functions. Wiley, New York, N.Y.
  24. Madansky, A. (1962). 'Methods of solution of linear programs under uncertainty.' Operations research, Vol. 10, No. 4, pp. 197-204 https://doi.org/10.1287/opre.10.4.463
  25. Maruyama, Y. (1972), 'The truncated maximum approach to farm planning under uncertainty with discrete probability distributions.' American journal of agricultural economics, Vol 54, pp. 192-200 https://doi.org/10.2307/1238701
  26. Torell, A, Libbin, J., and Miller, M. (1990). 'The market value of water in the Ogallala Aquifer.' Land economics, Vol 66, No. 2, pp. 163-175 https://doi.org/10.2307/3146366
  27. Yaron, D. (1967). 'Empirical analysis of the demand for water by Israeli agriculture.' Journal of farm economics, Vol 49, No. 2, pp. 461-473 https://doi.org/10.2307/1237216
  28. Young, R.A. (2005), Determining the economic value of water: concepts and methods. Resources for the Future, Washington D.C.

Cited by

  1. Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber vol.46, pp.2, 2013, https://doi.org/10.7745/KJSSF.2013.46.2.099
  2. Interval Double-Sided Fuzzy Chance-Constrained Programming Model for Water Resources Allocation vol.35, pp.6, 2018, https://doi.org/10.1089/ees.2017.0205