DOI QR코드

DOI QR Code

고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조

The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill

  • 엄영랑 (한국원자력연구원 원자력재료연구부) ;
  • 김재우 (한국원자력연구원 원자력재료연구부) ;
  • 정진우 (한국원자력연구원 원자력재료연구부) ;
  • 이창규 (한국원자력연구원 원자력재료연구부)
  • Uhm, Young-Rang (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jae-Woo (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Jin-Woo (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Division of Nuclear Materials Research, Korea Atomic Energy Research Institute (KAERI))
  • 발행 : 2009.04.28

초록

Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.

키워드

참고문헌

  1. R. Rodriguez, E. Arteaga, D. Rangel, R. Salazar, S. Vargas and M. Estevez: Journal of Non-Crystalline Solids, 355 (2009), p.132 https://doi.org/10.1016/j.jnoncrysol.2008.10.001
  2. F. Thevenot: J. Eur. Ceram. Soc. 6 (1990) 205 https://doi.org/10.1016/0955-2219(90)90048-K
  3. N. Vast, J. M. Besson, S. Baroni and A. Dal Corso: Comput. Mater. Sci., 17 (2000) 127 https://doi.org/10.1016/S0927-0256(00)00009-4
  4. F. Mauri, N. Vast, C. Pickard: Phys. Rev. Lett. 87 (2001) 085506 https://doi.org/10.1103/PhysRevLett.87.085506
  5. H. Lee, R. F. Speyer and W. S. Hackenberger: J. Am. Ceram. Soc., 85 (2002) 2131 https://doi.org/10.1111/j.1151-2916.2002.tb00420.x
  6. V. A. Artem'ev, 93(2) (2002) 665
  7. V. A. Artem'ev, 94(4) (2003) 282
  8. M. Alexandre and P. Dubois: Materials Science and Engineering, 28 (2000) 1 https://doi.org/10.1016/S0927-796X(00)00012-7
  9. Jeonghwan Kim, Munetake Satoh and Tomohiro Iwasaki: Materials Science and Engineering A, 342 (2003) 258 https://doi.org/10.1016/S0921-5093(02)00280-0
  10. K. S. Venkataraman and K.S. Narayanan: Powder Technol. 96 (1998) 190 https://doi.org/10.1016/S0032-5910(97)03368-8
  11. Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, G. Thomas, P. Grosseau and B. Guilhot: Powder Technology, 190(1-2) (2009) 200 https://doi.org/10.1016/j.powtec.2008.04.092
  12. M. Magini, A. Iasonna and F. Padella: Scripta Materialia, 34(1) (1996) 13-19 https://doi.org/10.1016/1359-6462(95)00465-3
  13. Alfeu S. Ramos, Simone P. Taguchi, Erika C.T. Ramos, Vera L. Arantes and Sebastiao Ribeiro: Materials Science and Engineering A, 422 (2006) 184 https://doi.org/10.1016/j.msea.2006.01.096
  14. F. Deng, H.-Y. Xie, L. Wang: Materials Letters, 60 (2006) 1771 https://doi.org/10.1016/j.matlet.2005.12.016

피인용 문헌

  1. The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.107