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During the period of past fifteen years (1992~ 2006), variations of chlorophyll a in
relation with water quality in freshwater reservoirs were investigated. This study
compared total nitrogen (TN), total phosphorus (TP), chlorophyll a, Secchi depth (SD)
and total suspended solids (TSS) between terrestrial freshwater reservoir and coas-
tal freshwater reservoir systems based on their location. Regression analyses (linear
and non-linear regressions) were applied for all study sites to examine relationship and
interaction of these factors in the freshwater systems from in-land to coasts. The
results demonstrated that chlorophyll a was significantly correlated to total phospho-
rus (R?=0.94, P<0.0001) and was remarkably related to TSS increase (R*=0.63, P<
0.0001) in the selected reservoirs. The TN: TP ratio in the reservoir systems was higher
than Redfield ratio (16:1) indicating that the reservoirs are potentially experiencing
P limitation. Water quality of coastal freshwater reservoir system was more significant-
ly decreased than the reservoirs located in in-land during the past fifteen years. The
strict management of nutrient discharge into freshwater systems should implement-
ed in the coastal reservoirs since the freshwater is introduced into coastal estuarine
systems.
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INTRODUCTION

Eutrophication can cause increase in primary
productivity, reductions in transparency, oxygen
depletion in water column, losses of suitable aqu-
atic habitats and biodiversity, public health threat
in freshwater systems (Portielje and Van der
Molen, 1999). In lakes, eutrophication can directly
affect autotrophic, heterotrophic and benthic mic-
roorganism in aquatic habitats (Dodds, 2006).
Several methods to control eutrophication in reser-

voirs were introduced by Straskraba (1996) with
ecotechnological methods and by Pitz and Ben-
ndorf (1998) with pre-reservoir method. Environ-
mental qualities of coastal estuarine systems have
been a major global concern related to anthropo-
genic inputs originated from inland (UNEP, 2006).

Reservoirs were constructed for irrigation, water
supply and flooding control in Korea. Freshwater
for water supply (mountain reservoirs and Nak-
dong river system) has been very important for
social economy (Chun et al., 2001). In general, res-
ervoir dynamics are not controlled naturally due
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to unique properties different from natural lakes.
However, their principles of ecological processes
and controlling factors are similar to natural lakes.

Eutrophication paradigm for freshwater reser-
voir such as Daecheong reservoir was developed
by Jones et al. (1997) and An and Park (2002). In
this study, long-term and multi-reservoir study
allows us not only to assess the risk of eutrophica-
tion-related problems in entire reservoirs but also
to identify the characteristics of nutrient loading
which must be controlled to maintain desirable
water quality. We also aimed to evaluate the vari-
ations of total nitrogen, total phosphorus, chloro-
phyll a, Secchi disk depth and total suspended
solids for a comparison between terrestrial and
coastal freshwater reservoir systems.

MATERIALSAND METHODS

Based on the location of the reservoirs, the Ok-
chong, Andong, Juam and Daecheong reservoirs
located in in-land were selected for terrestrial
freshwater reservoir systems and Asan, Sapkyo,

Ansan
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Nakdong
®
A Juam
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Youngsan

Fig. 1. The study sites in terrestrial (A) and coastal (®)
reservoirs located in inland and coastal areas.

Geum, Youngsan and Nakdong located in coastal
estuarine areas were grouped into coastal fresh-
water reservoir systems (Fig. 1). Total nitrogen
(TN), total phosphorus (TP), chlorophyll a, Secchi
disk depth (SD) and total suspended solids (TSS)
were analyzed for water quality of the reservoirs.
Data were chosen from 3 stations for each reser-
voir. Monthly data (1992 ~2006) including chloro-
phyll a, TN, TP, SD and TSS were obtained from
water quality monitoring program (Korea Ministry
of Environment) and precipitation from Korea
Meteorological Administration. TN, TP and Chlo-
rophyll a (chl a) was measured by using spectrop-
hotometric analyses and Secchi disk was used to
measure water transparency. TSS was determined
by using procedure for total suspended solids.
Ratios of TN: TP were analyzed to examine the
potential nutrient limitation of N and P. Nitrogen
is considered to be limited if the ratios are lower
than redfield ratio (Redfield, 1958), 16:1 and P is
limited if the ratios are higher than 16: 1. Further
details of collection and analyses of water quality
data were described in http://water.nier.go.kr.
Statistical analysis and paradigm (linear and non-
linear regressions) were applied for all data to
examine the correlationships of parameters in the
freshwater systems.

RESULTS

1. Comparisons between terrestrial reservoirs
and coastal reservoirs

In terrestrial reservoirs, annual mean Secchi
disk depth ranged from 2.2 to 3.2 m.

High precipitation and low transparency were
observed in terrestrial reservoirs such as in 1997,
1998 and 2003 (Fig. 2A-B). In coastal reservoirs,
annual Secchi depth ranged from 0.55 to 1.3 m.
The gradual decrease of transparency was obser-
ved for coastal reservoirs over fifteen years (Fig.
2B). Annual mean TSS was higher in coastal res-
ervoirs (12~31 mg L) than terrestrial reservoirs
(2~4.5mg L ™). In coastal reservoirs, TSS signif-
icantly increased from 12mg L™* in 1992 up to 31
mg L™* in 2004.

The annual mean variations of TN, TP and chl a
between terrestrial reservoirs and coastal reservo-
irs are shown in Fig. 3. In coastal reservoirs, TN,
TP and chl a concentrations were evidently higher
than those in terrestrial reservoirs (Fig. 3A, 3B,
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Fig. 2. Variations of annual means for precipitation, Secchi disk depth (SD) and annual mean total suspended solids (TSS)
collected from all study sites during the past fifteen years (1992 ~2006).

3D). Inversely, TN : TP ratio was higher in terres-
trial reservoirs ranging from 110 to 230 (Fig. 3C).
TN and TP had similar variation patterns in both
of terrestrial reservoirs and coastal reservoirs (Fig.
3A, 3B). TN concentration increased from 1992
to 1995 and stabilized (350 ~400 uM) from 1995
to 2006 in coastal reservoirs. TN concentration
inreased from 1992 to 1998 up to 125uM and
slightly decreased from 1998 to 2006 in terrestrial
reservoirs. Concentration of TP was high from
1993 to 1998 period, and it declined during 1999 ~
2000 period in both of terrestrial reservoirs and
coastal reservoirs. In period of 2001 ~2006, TP
concentration was high in coastal reservoirs but

low in terrestrial reservoirs. In Fig. 3C, TN: TP
ratio increased from 1992 to 2000 and decreased
from 2000 to 2006 in coastal reservoirs. The
TN : TP ratio increased from 1992 to 1999 and
decreased during 1999~ 2006 in terrestrial reser-
voirs. The annual mean variation of chl a concen-
tration in coastal reservoirs was different from
that in terrestrial reservoirs (Fig. 3D). In coastal
reservoirs, the chl a concentration increased from
12 ug L™1(1992) to 47 ug L™ (1999) and rapidly
decreased during 2000~ 2003 period and increased
again during 2004 ~2006. In terrestrial reservoirs,
chl a concentration gradually increased from 4 to
8ug L™ and peaked in 2003 (~12ug L ™).
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Fig. 3. Variations of annual means for TN, TP, TN : TP ratio, Chl a collected from all study sites during the past fifteen

years (1992 ~ 2006).
2. Relationships between nitrogen, phosphorus
and chlorophyll a

In this study, TN: TP ratios ranged from 28 to
439 for all reservoirs. The TN : TP ratio was gen-

erally higher than Redfield ratio (~16:1) and re-
vealed a positive correlation between TN and TP
(Fig. 4A). Regression analysis of log-transformed
TN : TP against TP indicated TN : TP was negati-
vely correlated with TP (Fig. 4B). Inversely, the
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Fig. 4. Relations of TN vs. TP concentrations, log-transfo-
rmed TN : TP molar ratios vs. log-transformed TN,
TP (annual means) collected from terrestrial and
coastal freshwater reservoirs (1992 ~2006).
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Fig. 5. Relationship between log-transformed Chl a and
log-transformed TN, TP concentrations (annual
means) respectively collected from terrestrial and
coastal freshwater reservoirs (1992 ~2006).

ratio was not correlated with TN (Fig. 4C). The
increase of chl a concentration was slightly affect-
ed by the decrease of TN : TP ratio (Fig. 4D).

Linear relationship was observed between log-
transformed annual mean chl a and log-transfor-
med annual mean TN concentrations for all study
sites (Fig. 5A). Strong curvilinear relationship was
fit between log-transformed annual mean chl a
and log-transformed annual mean TP (Fig. 5B) as
follows.

Logio (Chl a)=0.99+0.88 Logi0 (TP)
—0.39 Logio (TP)?, R*=0.94

3. Relationships between physio-chemical
and biological parameters

In the reservoirs, inter-relations between physi-
cal, chemical and biological factors including total
phosphorus, total nitrogen, Secchi disk depth, chl
a concentration and total suspended solids were
analyzed (Fig. 6). Transparency of water (SD) was
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Fig. 6. Relationship between annual means of parameters including Secchi disk depth (SD), TSS, Chl a, TN and TP collect-
ed from terrestrial and coastal freshwater reservoirs (1992 ~2006). Correlation of SD vs. Chl a was shown for the
period of pre-monsoon (Jan~Jun, @), monsoon (Jul~Aug, A) and post-monsoon (Sep~ Dec, m).

related with TSS by inverse third order (Fig. 6A).

SD=0.23+10.85(TSS)-13.11 (TSS) 2
+5.23(TSS) %, R?=0.96

relationship with log-transformed chl a (Fig. 6B)
and chl a concentration was positively correlated
with TSS (Fig. 6C). Log-transformed annual mean
data of TN and TP concentrations were also posi-

Log-transformed SD appeared to have negative tively correlated with log-transformed annual
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mean TSS (Fig. 6D, E).

DISCUSSION

In coastal reservoirs, the variations of annual
mean chl a concentration may be affected by both
phosphorus and TN : TP ratio. In this study, the
peak of TN : TP ratio appeared due to TP decline
and was coincident with the collapse of chl a con-
centration in 2000. The collapse was gradually
restored after several years when TP increased
and TN: TP ratios decreased. Smith (1982) also
emphasized that algal biomass in lakes was dep-
endent both on the phosphorus concentration and
the TN : TP ratio. In terrestrial reservoirs, the
variation of chl a was not related to TN and TP
variations in long-term basis. Based on the crite-
ria from Marshall and Peters (1989), the coastal
reservoirs were eutrophic (mean chl a concentra-
tion >12ug LY and the terrestrial reservoirs
were oligotrophic or mesotrophic (mean chl a con-
centration <7ugL™).

Redfield ratio has widely been used to assess
the nutrient limitation of aquatic ecosystem
(Redfield, 1958; Smith, 2006). The TN: TP ratio in
the reservoir systems was higher than Redfield
ratio indicating that the reservoirs are potentially
experiencing P limitation. Sakamoto (1966) docu-
mented that strong P limitation was observed
when TN : TP ratio was higher than 17: 1 in lakes.
Therefore, phosphorus is considered as the limit-
ing factor for primary production in the reservoirs.
Phosphorus variations are sensitive to variations
in the TN : TP ratios in reservoir systems (Fig. 4B).
The similar results have been documented by An
and Park (2002) for Daecheong reservoir. Fisher
et al. (1995) reported that the restriction of phyto-
plankton growth in inland waters was due to
nutrient limitation. The strong P limitations were
also common in freshwater lakes of the north tem-
perate region (Arhonditsis and Brett, 2005). Phos-
phorus loadings from external (anthropogenic
emission) or internal (recycling nutrient in ecosys-
tem) processes affected phytoplankton growth,
and biomass accumulation. However, external P
loading was related to discharge or land use and
internal P loading was strongly related to season
(Steinman et al., 2009).

The curvilinear relationship of data analysis
suggests that the relationship between Chl a and
TP was weaker than between Chl a and TN. This

is probably due to a different mechanism between
N and P in nutrient cycles. The curvilinear relati-
onship of phytoplankton and phosphorus was also
documented by An and Park (2002). They argued
that rapid flushing and high inorganic suspended
solids during wet seasons modified Chl a-TP rela-
tionship.

By enhancing biological activity, macro-nutrient
enrichment is typically related to remarkable cha-
nges in the shift in phytoplankton species composi-
tion (Bellinger et al., 2006; Dong et al., 2008). In
the freshwater, the cyanobacteria including harm-
ful species were typically dominant (Reeders et
al., 1998; Gobler et al., 2007). In addition, the eut-
rophication causes difficulties for drinking water
treatment processes such as purifications of toxin,
inorganic and organic matters (Vorobieva et al.,
1996).

The variations of SD and TSS in coastal reser-
voirs have rapidly changed during the recent fif-
teen years. This indicates that water qualities of
coastal reservoirs were typically impacted by dis-
charge sources from upstream. The results from
Fig. 6 imply that the increase of TSS caused rapid
decrease in water transparency and TSS had posi-
tive correlations with Chl a, TN and TP. Roozen
et al. (2003) also showed that inorganic suspended
solids affecting turbidity had a positive correlation
with phytoplankton biomass in lakes. Based on
the results, we conclude that inter-reaction among
TSS, nutrients and phytoplankton biomass esti-
mated by chlorophyll a were evident and eutrophi-
cation caused rapid changes of water quality para-
meters in the study reservoirs.

Kronvang et al. (2005) showed that the reducing
duty of TN and TP discharges from point sources
to the Danish aquatic environment has reduced
69% of TN and 82% of TP after 13 year implemen-
tation. In Korea, nutrient loadings from non-point
sources are potentially increasing and freshwater
discharges into coastal water through embankm-
ents are high during summer monsoon and they
are related to annual precipitation intensity. The
increases in nutrient concentrations of freshwater
due to nutrient inputs from urban and agriculture
can cause essential increase of nutrient loading
into coastal waters. Therefore, the reductions in
major sources of nutrient loading (N, P) to streams
may contribute to the declines in riverine and lake
nutrient concentrations and improvements in tro-
phic conditions in freshwater systems as well as
coastal estuarine systems.
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In conclusion, this study contributes to better
understanding the freshwater reservoir systems
in which nutrient enrichment can modify primary
production (chlorophyll a). Two primary nutrients
(N, P) were related to aquatic primary production
in the study reservoirs however P may be more
important source since TP significantly influenced
TN : TP ratio and the reservoirs experience mostly
P limitation. Chlorophyll a was related more lin-
early to nitrogen increase than to phosphorus in-
puts probably due to a different mechanism bet-
ween N and P in nutrient cycles. Eutrophication
was evident in the coastal reservoir systems com-
pared to terrestrial systems and generally related
to deteriorated conditions such as increase of TSS
and decrease of water transparency. This can shift
freshwater ecosystem in the coastal area but also
impact coastal marine habitats since the fresh-
water is introduced into marine systems.
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