References
- Archer S, Hopε AJ and Partridge JC. 1995. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. Roy. Soc. Lond. B262, 289-95 https://doi.org/10.1098/rspb.1995.0208
- Bowmaker JK and Hunt DM. 1999. Molecular bio1ogy of photoreceptor spectral sensitivity. In adaptive mechanisms in thε ecology of vision, Ed. Archer SN, Djamgoz MBA, Loew ER, Partridge JC and Vallerga S. pp. 439-62. Dordrecht: Kluwer Academic Publisher
- Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK and Stevens RC. 2007. Highresolutioncrysta1 structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318, 1258-66 https://doi.org/10.1126/science.1150577
- Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AEO, Hunt DM and Collin SP. 2007. Functiona1 characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J., 21, 2713-24 https://doi.org/10.1096/fj.06-8057com
- Fitzgibbon J, Hope A, Slobodyanyuk SJ, Bellingham J, Bowmaker JK and Hunt DM. 1995. The rhodopsinencoding gene of bony fish lacks introns. Gene, 164, 273-7 https://doi.org/10.1016/0378-1119(95)00458-I
-
Franke RR, K
$\ddot{o}$ nig B, Sakmar TP, Khorana HG and Hofmann KP. 1990. Rhodopsin mutants that bind but fail to activate transducin. Science, 250, 123-125 https://doi.org/10.1126/science.2218504 -
Helvik JV, Drivenes
$Ø \O$ , Naess TH, Fjose A and Seo HC. 2001. Molecular$\acute{c}$ loning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci., 18, 767-80 - Hope AJ, Partridge JC and Hayes PK. 1998. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc. Roy. Soc. Lond., B265, 869-74 https://doi.org/10.1098/rspb.1998.0372
- Hunt, DM, DuLai KS, Partridge JC, Cottrill P and Bowmaker JK. 2001. The molecular basis for spectra1 tuning of rod visual pigments in deep-sea fish. J. Exp. Biol., 204, 3333-44
- Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A and Shichida Y. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. USA, 94, 2322 https://doi.org/10.1073/pnas.94.6.2322
- Inoue H, Nojima H, and Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-8 https://doi.org/10.1016/0378-1119(90)90336-P
- Kamik SS, Sakmar TP, Chen HB and Khorana HG. 1988. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 85, 8459-63 https://doi.org/10.1073/pnas.85.22.8459
- Kaushal S, Ridge K and Khorana HG. 1994. Structure and function in rhodopsin : The role of asparagine linked glycosylation. Proc. Natl. Acad. Sci. USA, 91 , 4024-8 https://doi.org/10.1073/pnas.91.9.4024
- Khorana, H.G. 2000. Molecular biology of light transduction by the mammalian photorecEptor, rhodopsin. J. Biomol. Struct. Dyn., 11, 1-6
- Kim, JM, Kim SW and Kim SK. 2007. Molecular cloning and characterization of the rod opsin gene in olive flounder Paralichthys olivaceus. J. Fish. Sci. TEch. l0, 8-15
- Lythgoe JN. 1979. The Ecology of Vision. Oxford, Clarendon Press
- Menon ST, Han M and Sakmar TP. 2001. Rhodopsin structural basis of molecular physiology. Physiol. Rev., 81, 1659-88
- Nakayama TA and Khorana HG. 1991. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. Biol. Chem., 266, 4269-75
- Ohguro H, Johnson RS, Ericsson LH, Walsh KA and Palczewski K. 1994. Control of rhodopsin multiple phosphorylation. Biochemistry, 33, 1023-8 https://doi.org/10.1021/bi00170a022
- Oprian DD, Molday RS, Kaufman RJ and Khorana HG. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA, 84, 8874-8 https://doi.org/10.1073/pnas.84.24.8874
- Ovchinnikov Y A, Abdulaev NG and Bogachuk AS. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett., 230, 1-5 https://doi.org/10.1016/0014-5793(88)80628-8
- Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M and Miyano M. 2000. Crystal structure of rhodopsin: A G proteincoupled receptor. Science, 289, 739-45 https://doi.org/10.1126/science.289.5480.739
- Philp AR, Bellingham J, Garcia-Femandez JM and Forster RG. 2000. A novel rod like opsin isolated from the extra-retinal photoreceptors ofteleost fìsh. FEBS Lett. 468, 181-8 https://doi.org/10.1016/S0014-5793(00)01217-5
- Rosenbaum DM, Rasmussen SG and Kobilka BK. 2009. The structure and function of G-protein-coupled receptors. Nature, 459, 356-63. https://doi.org/10.1038/nature08144
- Sakmar TP, Franke RR and Khorana HG. 1989. Glutamic acid-l13 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 86, 8309-13 https://doi.org/10.1073/pnas.86.21.8309
- Sambrook J and Russell DW. 2001. Molecular cloning: A laboratory manual. Third edition. Cold Spring Harbor Laboratory Press, NY, Plainview
- Thompson JD, Higgins DG and Gibson TJ. 1994. CLUST AL W: improving the sensitivity of progresssive multiple sequence alignment through sequence weight matrix choice. Nucleic. Acids. Res., 22, 4673-80 https://doi.org/10.1093/nar/22.22.4673
- Yokoyama S. 1995. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol. Biol. Evol., 12, 53-61 https://doi.org/10.1093/oxfordjournals.molbev.a040190
- Y okoyama S and Radlwimmer FB. 1998. The "Five Sites" rule and the evolution of rod and green color vision in mammals. Mol. Biol. Evol., 15, 560-7 https://doi.org/10.1093/oxfordjournals.molbev.a025956
- Wang JK, McDowell JH and Hargrave PA. 1980. Site of attachment of 11-cis retinal in bovine rhodopsin. Biochemistry, 19, 5111-7 https://doi.org/10.1021/bi00563a027
- Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S and Okamoto N. 2000. Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese expressional analyses during sexual maturation. FEBS Lett. 469, 39-43 https://doi.org/10.1016/S0014-5793(00)01233-3