Abstract
In case of the optimization problems that have many design variables, the conventional genetic algorithms(GA) fall into a trap of local minima with high probability. This problem is called the premature convergence problem. To overcome it, the parallel genetic algorithms which adopt the migration mechanism have been suggested. But it is hard to determine the several parameters such as the migration size and the migration interval for the parallel GAs. Therefore, we propose a new method to determine the migration interval automatically in this paper. To verify its validity, it is applied to some traditional mathematical optimization problems and is compared with the conventional parallel GA. It is also applied to the optimal design of the brushless DC motor for an electric wheel chair which is a real world problem and has five design variables.