References
- Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions, The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
- Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differ-ences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
- Agresti, A. and Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions, Biometrics, 57, 963-971 https://doi.org/10.1111/j.0006-341X.2001.00963.x
- Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 https://doi.org/10.2307/2287116
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133
- Casella, G. T., Hwang, T. G. and Robert C. P. (1994). Loss functions for set estimation, Statistical Decision Theory and Related Topics V (Edited by S. S. Gupta and J. O. Berger), Springer-Verlag
- Chan, I. S. F. and Zhang, Z. (1999). Test-based exact confidence intervals for the difference of two binomial proportions, Biometrics, 55, 1202-1209 https://doi.org/10.1111/j.0006-341X.1999.01202.x
- Coe, P. R. and Tamhane, A. C. (1993). Small sample confidence intervals for the difference, ratio and odds ratio of two success probabilities, Communications in Statistics Part B-Simulation and Computation, 22, 925-938 https://doi.org/10.1080/03610919308813135
- Esty. W. E. and Banfleld, J. D. (2003). The box-percentile plot, Journal of Statistical Software, 8, Issue 17
- Lehmann, F. L. (1986) Testing statistical hypotheses, John Wiley & Sons, New York
- Lee, S.-C. (2006a). Interval estimation of binomial proportions based on weighted Polya posterior, Computational Statistics & Data Analysis, 51, 1012-1021 https://doi.org/10.1016/j.csda.2005.10.008
- Lee, S.-C. (2006b). The weighted Polya posterior confidence interval for the difference between two independent proportions, The Korean Journal of Applied Statistics, 19, 171-181 https://doi.org/10.5351/KJAS.2006.19.1.171
- Lee, S.-C. (2007). Confidence intervals for a linear function of binomial proportions based on a Bayesian approach, The Korean Journal of Applied Statistics, 20, 257-266 https://doi.org/10.5351/KJAS.2007.20.2.257
- Meeden, G. D. (1999). Interval estimators for the population mean for skewed distributions with a small sample size, Journal of Applied Statistics, 26, 81-96 https://doi.org/10.1080/02664769922674
- Miettinen, O. S. and Nuriminen, M. (1985). Comparative analysis of two rates, Statistics in Medicine, 4, 213-226 https://doi.org/10.1002/sim.4780040211
- Newcombe, R. G. (1998), Interval estimation for the difference between independent porportions: Comparison of eleven methods, Statistics in Mediciene, 17, 873-890 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
- Price, R. M. and Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions, Computational Statistics & Data Analysis, 45, 449-456 https://doi.org/10.1016/S0167-9473(03)00007-0
- R Development Core Team (2008). R: A language and environment for statistical computing. R Foun-dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
- Santner, T. J., Pradhan, V., Senchaudhuri, P., Mehta, C. R. and Tamhane, A. C. (2007). Small-sample comparisons of confidence intervals for the difference of two independent binomial proportions, Computational Statistics & Data Analysis, 51, 5791-5799 https://doi.org/10.1016/j.csda.2006.10.018
-
Santner, T. J. and Snell, M. K. (1980). Small-sample confidence intervals for
$p_{1}$ -$p_{2}$ and$p_{1}$ /$p_{2}$ in$2{\times}2$ contingency tables, Statistics in Medicine, 17, 873-890 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I - Santner, T. J. and Yamagami, S. (1993). Invariant small sample confidence intervals for the difference of two success probabilities, Communications in Statistics, Part B-Simulation and Computation, 22, 33-59 https://doi.org/10.1080/03610919308813080
- Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference, Journal of the American Statistical Association, 22, 209-212 https://doi.org/10.2307/2276774