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Multiple Deletions in Logistic Regression Models
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Abstract

We extended the results of Roy and Guria (2008) to multiple deletions in logistic regression models. Since
single deletions may not exactly detect outliers or influential observations due to swamping effects and mask-
ing effects, it needs multiple deletions. We developed conditional deletion diagnostics which are designed to
overcome problems of masking effects. We derived the closed forms for several statistics in logistic regression
models. They give useful diagnostics on the statistics.
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1. Introduction

Regression models are efficient under certain assumptions. These are violated by outliers or influential
observations. The detection of outliers or influential observations has a long history. Many diagnostic
measures have been proposed in classical linear regression model (Belsley et al., 1980; Cook and
Weisberg, 1982). A few works that treat detection of influential observations for general types of
linear model are found. Among them, Pregibon (1981) proposed the Pearson residuals for a binary
model through logistic regression and Thomas and Cook (1989) studied the local influence in the
generalized linear model(GLM), which was suggested by Cook (1986). Those diagnostics are based
on the perturbation schemes.

Deletion statistics are basic tools in regression diagnostics. However, deletion statistics in GLM
are complicated, because the models use the maximum likelihood estimators(MLE) instead of the
least squares estimators. In GLM the MLEs are usually obtained using iteratively reweighted least
squares, a kind of least squares estimates which is known to be sensitive to outliers or influential
observations. The diagnostics in GLM with Gaussian linear models used the Pearson residual, the
deviance residual, the hat matrix and the Cook distance (Dobson, 2002, pp. 127-130). Roy and Guria
(2008) proposed deletion diagnostics for logistic regression models, based on the Newton-Raphson
approximation formula. Since these diagnostics are single case deletion methods, they cannot de-
tect unusually multiple observations and overcome the errors of masking or swamping effects (Jung,
2007).

In this work we extend the results of Roy and Guria (2008) to multiple deletions for regression
parameters and statistics which are very useful for regression diagnostics in GLM. In Section 2 we
review the logistic regression model and introduce some notations used in this paper. We derive the
multiple deletion regression coefficients for the maximum likelihood estimators. And we develope
a conditional deletion diagnostics which are designed to overcome problems of masking effects. In
Section 3 we derive multiple deletion diagnostics related to statistics for the logistic regression model.

! Professor, Department of Informatics and Statistics, Kunsan National University, 68 Miryong-Dong, Kunsan 573-701,
Korea. E-mail: kmjung @kunsan.ac kr



310 Kang-Mo Jung

In Section 4 an illustrative example is given and the result shows that multiple deletions are useful to
check whether the swamping effects or masking effects exist or not.

2. Multiple Deletions for Regression Coefficients

Fori = 1,...,nlet consider the model y; = y; +¢;, where y; = xiTﬂ and ¢ follows N(0, o). Nelder and
Wedderburn (1972) extended this normal linear model to the GLLM with considering the non-normal
response variables and the link function g(u;) = xl.Tﬂ, where 8 = (Bi,...,B,)" is the parameter vector
of regression coefficients. When the link function is the logit function we call this model a logistic
regression model with a binary response variable having values 0 or 1. The logistic regression model
can be written as
NP

Pi:P(yi:“Xi):m

and P(y; = 0) = 1 — P;. The log-likelihood function becomes

n

LB) = Z [yixIB~n (1 + 7)) : 2.1)

i=1

Lets; =y — P;, v = P(1=P)),s = (s1,...,5,), V = diag(vy,...,v,) and Z = V/2X. Then the
maximum likelihood estimator of 8 can be obtained iteratively by

B =8 +(Z'z) (27V1s), 2.2)

where B° is an initial solution of B. And the matrices Z, s and V are evaluated at 8°.
Now we derive deletion statistics when the observations corresponding to the index set J with
length m of {1,...,n} are omitted. The log-likelihood function with the deletion of the index set J

becomes
n

1@ = Y [xlp-n(1+)). 2.3)
i=1,igJ
Then ”
8
Laﬁ(ﬂ) = XTS - ;stj'
and

FLY (B) T T
j&J
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where z; = /v;x;. Without observations for the index set J the first approximation to “ becomes
-1
Al
B'Y = g (ZTZ -z ,-z]T.] (XTS R ,-], 2.4)
jgd Jj¢J

where %% is an initial solution with the deletion of observations corresponding to the index set J. It
is usual to set B° as the least squares estimate (X"X)~'X"y for a linear regression model. It is natural
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to use

-1
[XT)’ - Xm) 25)

JjéJ

jgJ
= - (X"X)" XI(1-H,) e,

where H; is the m x m minor of H = X(XTX) !XT given by the intersection of the rows and columns
indexed by J, thatis H; = X,;(X"X)"'XT and e; = y, - X78".
We simplify the second term in (2.4). Since

-1
(ZTZ -z jzf} = (ZTZ)" + (ZTZ)_I z](1- H;)_IZJ (z'fz)_1 :
j¢J

where HY, = Z,(Z"Z)™'Z}, some calculation yields

- - - -1

(272-27z,) (X7s-X]s)) = (272) X's— (272) Z}(1-H;) e, 2.6)
where e}, = V;U %5y — Z,(ZTZ) ' Z7V~"/25 which can be obtained by residual for regressing V;l/ %s,
on Z;. Also the statistics are evaluated at 8°. Then from (2.5) and (2.6) we have the regression
estimate (2.4) with the deletion of the index set J
S 1)

B

Equation (2.7) may get more exact influence information than single deletions which cannot detect
outliers when data have swamping or masking effects.

If we use a fully iterated estimate instead of the initial estimate, the deletion estimate in (2.7)
becomes

=B - (@) (- m) e - (X)X -H) e @7

B =p+(2z) " (27vis) - (272) Zi(1- 1) e 2.8)

=p-(2'z) Z)(1-1) e,

where the last term on the right hand side of (2.8) is evaluated at 8. Since the last terms are calculated
on the full set, it does not need running the regression again without the index set J.

Lawrance (1995) developed a conditional deletion diagnostic designed to detect and overcome
problems of masking within datasets under the ordinary least squares model. We have extended
Lawrance’s conditional deletion diagnostic to the logistic regression model. The quantities calculated
are the estimate for the K cases after deletion of the J cases. It arises from assessing conditional

. . .. . . ~K () .

influence on the deletion of the other case. The conditional influence is denoted by S and is
, A (JK) AT

exactly equal to the difference of ﬂ( " and ﬂ( ). Thus we have

K

B = —(27z) " 2T (1- W) e - (XTX) T XD (1 Hox) e 29)

H(272)  Z(1-1) e+ (XTX) XD (1-H)) e

Also the conditional deletions for the converged estimate are similarly derived as (2.8).
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3. Multiple Deletions for Statistics

In this section we derive multiple deletions of a scalar instead of the deletion impact of the regression
coefficient vector 8. The influence information on the observation of S can be reserved as a form
of linear combination between covariates and the regression coefficients. We consider the estimated
linear predictor n; = xfﬁ and compute the deletion statistics

DFFITY = gl — 3! (3.1)

t

v il (272) 2 (- W) €+ xT (XTX) XD (1-H,) ey,

A large value of DFFITI(,J) implies that the observation i has large impact on the regression coefficient
without observations J in the sense of the regression coefficient vector rather than each components
of the vector. For the final iterated estimate instead of the initial estimate we get the statistic DFFIT;
without the index set J by the first term of (3.1).

Next we considered a diagnostic which is a scalar for the regression coefficient vector. Cook
(1977) proposed Cook’s distance, (ﬁ(]) -B) XX(ﬂ(j) —B)/ps? in linear regression. For logistic regres-
sions the change in likelihood gives Cook’s distance as the scaled likelihood difference

20 (8)- Lp')

LDY) = , (3.2)

where

LD (BW))

The definition of P; yields
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—
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where I(-) denotes the indicator function and PY(y; = 1) = IA’EJ) = N i’]m/(l + e"fT["m), POy, =0) =
1- f’fj) and they are followed by (2.8). Also we have the conditional deletions

THIKW)

ﬁ
5 pK(J
PK(J)(}’:: 1)=Pl( ) 1+ B”((J),
e i
where B85 is followed by (2.9).
Then (3.2) becomes
POy = k)
)
LDV =2 ; kZ; 1; = k){ Py, = }/ p. (3.3)

We have the conditional deletions LD

)
-0}

LDXY) =
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Another statistic to measure the impact of the observations is deviance which can be defined as
D = 2(L(y) - L(B)). It can be a statistic for goodness of fit of a model. A substantial decrease in the
deviance after the deletion of the index set J implies that the observations are misfits (Roy and Guria,
2008). In this case Y = 1 or Y = 0, the deviance becomes

D:—ZZ:lﬁiln fii)- +In(1 —13,-)].

I

See page 30 of Faraway (2006). And we have the deviance without the index set J

n [",(.J)
) — _ ) R T S 0]

DY = 22[1)[ n— +In(1-P")|.

ig i
Thus we have
DDEVY) = p - p¥ (3.4)
XiTﬁI(J) o
=p+2 Y| TAW)—ln(]+eX'Tﬁ ) .

1 L1+ 5B

The multiple index set J having large DDEV" indicates a st of outliers. Similarly we define the
conditional deletions for DDEV by DDEVXY) = p) — pU:&),

4. Numerical Example

In this section we illustrate how the multiple deletions given in Sections 2 and 3 provide influence
information about the parameters and statistics in logistic regression models. We investigate the in-
fluence of observations on the regression coefficients using (2.7), (3.1), (3.3) and (3.4).

Finney (1947) provided the data on the effect of the rate and volume of air inspired on a transient
vasco-constriction in the skin of the digits. See Pregibon (1981). The response variable describes
whether the occurrence of vasco-constriction (Y = 1) or nonoccurrence (¥ = 0). The predictors are
the logarithm of RATE and VOLUME.

We consider the model 7 = 8] + 3, log(RATE) + 83 1og(VOLUME). The Newton-Raphson method
gives the MLEs of § as

N A ~ ~ T T
B=(Br.hops) =(-2.875,5.179,4.562)".

The single deletions are summarized in Pregibon (1981). They concluded that observations 4 and 18
are most influential for the regression parameters.

We conducted regression diagnostics using multiple deletions developed in Sections 2 and 3. Ta-
ble 1 summarizes single deletions for regression parameters and DFFIT, LD, DDEV based on the
fully iterated estimate given in the above paragraph. That is, the matrices Z, H are evaluated at the
points instead of the initial estimate. The numbers are arranged to the absolute difference between
the estimates without corresponding observations and those based on the full data. The number in the
parenthesis denotes the corresponding index. Table 1 shows that observations 4 and 18 are most in-
fluential for all parameters and statistics. However it does not imply that there are not masking effects
or swamping effects. We should conduct multiple deletions on the statistics.

Tables 2 and 3 are summarized on the double deletions and triple deletions for the vasco-constriction
data. The most influential observations are 4 and 18. From Table 2 the difference between the largest
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Table 1: Single deletions for the vasco-constriction data

Kang-Mo Jung

B B2 B3 DFFIT LD DDEV
1.42 ( 4) -1.89( 4) -1.70( 4) 1.27( 4) 046 ( 4) 445(4)
1.26 (18) -1.58 (18) -1.52 (18) 0.99 (18) 0.34 (18) 3.97 (18)
-0.34 (19) 0.33 (13) 0.37 (19) 0.45 (31) 0.05 (19) 2.14 (24)
0.31 (29) 0.30 (12) -0.35(29) 0.36 (29) 0.05 (29) 1.82 (33)
-0.25 (23) 0.26 (38) 0.31( 6) 0.24 ( 6) 0.04 (24) 1.55(19)
Table 2: Double deletions for the vasco-constriction data -
Bi B2 B3 LD DDEV
298 (4,18) -3.86 (4, 18) -3.59( 4, 18) 1.99 ( 4, 18) 7.67 (4, 18)
1.79 ( 4,29) —2.06 (4,24) -2.14 ( 4,29) 0.66 ( 4,29) 6.32 (4,24)
1.66 (18, 29) -1.94 (4, 26) -1.98 (18, 29) 0.55 (18, 29) 6.12 (4, 33)
1.57( 4,31) -1.93(4,21) -1.89 ( 4,31) 0.51 ( 4,31) 594 (4,19)
146 ( 4, 39) -1.93 4, 30) -1.75( 4,30) 0.47( 3,39) 5.86 (4, 23)
Table 3: Triple deletions for the vasco-constriction data
Bi B2 B3 LD DDEV

3.47 (4, 18,29)
3.16 (4,18, 31)
3.16 (4, 18, 22)
3.12 (4, 18, 26)
3.10 (4, 18, 30)

-4.07 (4, 18, 22)
~4.06 (4, 18, 26)
—4.00 (4, 18, 38)
-4.00 (4, 18, 21)
—4.00 (4, 18, 24)

-4.16 (4, 18, 29)
-3.80 (4, 18, 31)
-3.80 (4, 18, 22)
~3.77 (4, 18, 26)
-3.75 (4, 18, 30)

2.42 (4, 18,29)
2.05 (4, 18,31)
2.05 (4, 18, 39)
2.03 (4, 18, 26)
2.02 (4, 18,21)

9.29 (4, 18,29)
9.25 (4, 18,24)
9.19 (4, 18, 33)
8.99 (4, 18,31
8.92 (4,18, 19)

Table 4: Conditional deletions for the vasco-constriction data when J = (4,18} and K = 1,...,n

Bi B B LD DDEV
0.49 (29) 0.26 (31) ~0.57 (29) 0.43 (29) 1.62 (29)
-0.26 (19) -0.21 (22) 0.29 (19) —0.24 (28) 1.57 (24)
-0.19 (23) -0.20 (26) 0.28 ( 6) -0.24 37 1.51(33)
0.18 (31) 0.14 (13) -0.21 (31) =0.24 (23) 1.32 3D
0.18 (22) -0.14 (38) -0.21 (22) -0.23( 8) 1.24 (19)

influence and the second largest influence is somewhat large. It means that observation 4 or 18 im-
pacts influence on the statistics. But the difference between the largest influence and the second largest
influence is not large. It means that there may not be swamping or masking effects and only obser-
vations 4 and 18 have large influence. In Table 3 we can see the same phenomenon. It is sure that
observations 4 and 18 are only influential.

To show the non-existence of swamping effects and masking effects we performed the conditional
deletions when J = {4,18} and K = 1,...,39. The results are summarized in Table 4. We can see
that the values in Table 4 are smaller than those in Table 1. If there are other influential observations
except observations 4 and 18, DDEV of Table 4 will have the difference as large as 4.45, that of Table
1. But the largest DDEV of Table 4 is 1.62 which is corresponding to the fifth largest DDEV of Table
1. It implies that there are not large influence on statistics except observations 4 and 18.

We conclude that the vasco-constriction data has only two influential observations 4 and 18. Also
there are not swamping effects and masking effects and observations 4 and 18 have individual influ-
ence on the statistics. The conclusion can be illustrated by only multiple deletions which are easily
obtained from our derivations.
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