DOI QR코드

DOI QR Code

Maximum Trimmed Likelihood Estimator for Categorical Data Analysis

범주형 자료분석을 위한 최대절사우도추정

  • Choi, Hyun-Jip (Dept. of Applied Information Statistics, Kyonggi Univ.)
  • 최현집 (경기대학교 응용정보통계학과)
  • Published : 2009.03.30

Abstract

We propose a simple algorithm for obtaining MTL(maximum trimmed likelihood) estimates. The algorithm finds the subset to use to obtain the global maximum in the series of eliminating process which depends on the likelihood of cells in a contingency table. To evaluate the performance of the algorithm for MTL estimators, we conducted simulation studies. The results showed that the algorithm is very competitive in terms of computational burdens required to get the same or the similar results in comparison with the complete enumeration.

범주형 자료분석을 위해 고려할 수 있는 모형들은 일반적으로 최우추정에 의하여 적합이 이루어지므로 이상값에 쉽게 영향을 받을 수 있다. 본 연구에서는 분할표 자료에 포함된 이상칸(outlying cell)에 영향을 받지 않는 최대 절삭우도 추정 값(maximum trimmed likelihood estimates)을 얻기 위한 추정 방법을 제안하였다. 제안된 방법은 우도에 의존하여 분할표에 포함된 칸을 제거해나가며 절사우도의 최대값을 찾기 때문에 완전탐색(complete enumeration)에 비해 계산의 양이 매우 적다. 따라서 일반적인 다차원 분할표 자료분석을 위해 쉽게 적용될 수 있다. 실제 자료분석 예를 통해 제안된 추정방법을 설명하였으며, 모의실험을 통해 문제점과 특징을 토론하였다.

Keywords

References

  1. 최현집 (2003). 범주형 자료 분석을 위한 LAD 추정량, <응용통계연구>, 16, 55-69 https://doi.org/10.5351/KJAS.2003.16.1.055
  2. Cheng, T. and Biswas, A. (2008). Maximum trimmed likelihood estimator for multivariate mixed contin-uous and categorical data, Computational Statistics and Data Analysis, 52, 2042-2065 https://doi.org/10.1016/j.csda.2007.06.026
  3. CIzek, P. (2006). Trimmed likelihood-based estimation in binary regression models, Austrian Journal of Statistics, 2 & 3, 223-232
  4. Grizzle, J. E., Stamer, C. F. and Koch, G. G. (l969). Analysis of categorical data by linear models, Biometrics, 25, 489-504 https://doi.org/10.2307/2528901
  5. Hadi, A. S. and Luceno, A. (1997). Matimum trimmed likelihood estimators: A unified approach, exam-ples, and algorithms, Computational Statistics and Data Analysis, 25, 251-272 https://doi.org/10.1016/S0167-9473(97)00011-X
  6. Mili, L. and Coakley, C. W. (1996). Robust estimation in structured linear regression, The Annals of Statis-tics, 24, 2593-2607 https://doi.org/10.1214/aos/1032181171
  7. Mosteller, F. and Parunak, A. (1985). Identifying extreme cells in a sizable contingency table: Probabilistic and exploratory approaches, In Exploring Datat Tables, Trends and Shapes, 189-225
  8. Neykov, N. and Muller, C. H. (2002). Breakdown point and computation of trimmed likelihood estimators in generalized linear models, In Developments in Robust Statistics, 277-286
  9. Neykov, N., Filzmoser, P., Dimova, R. and Neytchev, P. (2007). Robust fitting of mixtures using the trimmed likelihood estimator, Computational Statistics and Data Analysis, 52, 299-308 https://doi.org/10.1016/j.csda.2006.12.024
  10. Rousseeuw, P. J. (1984). Least median of squares regression, Journal of the American Statistical Associa-tion, 79, 871-880 https://doi.org/10.2307/2288718
  11. Rousseeuw, P. J. and Driessen, K. (2006). Computing LTS regression for large data sets, Data Mining and Knowledge Discovery, 12, 29-45 https://doi.org/10.1007/s10618-005-0024-4
  12. Shane, K. V. and Simonoff, S. S. (2001). A Robust approach to categorical data analysis, Journal of Computational and Graphical Analysis, 10, 135-157 https://doi.org/10.1198/10618600152418683