하이브리드 발견적 탐색기법을 이용한 천부 굴절법 자료의 파형역산

Waveform inversion of shallow seismic refraction data using hybrid heuristic search method

  • Takekoshi, Mika (The Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Yamanaka, Hiroaki (The Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)
  • 발행 : 2009.02.28

초록

본 연구에서는 천부 토양층의 2차원 불균질 S파 단면을 결정하기 위해 천부 굴절법 탐사로부터 얻은 SH파 자료에 대한 파형역산 기법을 제안한다. 2차원 매질에서 SH파의 전파를 모사하기 위해 2.5차원 파동 방정식을 사용한다. 합성탄성파를 계산하기 위해 공간축으로 4차, 시간축으로 2차 근사한 staggered grid 유한차분법을 사용하여 파동 방정식을 푼다. 계산된 파형과 측정 파형의 잔여오차로 정의되는 목적함수를 하이브리드 발견적 탐색기법에 의해 최소화한다. 2차원 지하구조 모형은 각기 다른 심도 경계면을 갖는 블록과 블록 내부의 S파 속도에 의해 매개화한다. 수치실험은 암영층파 불규칙한 경계를 갖는 모델에 대해 백색잡음을 추가한 합성 SH파 자료를 이용하여 수행하였다. 지표 굴절법 자료로부터 암영층을 포함한 구조를 적절한 계산시간 내에 영상화할 수 있었다

We propose a waveform inversion method for SH-wave data obtained in a shallow seismic refraction survey, to determine a 2D inhomogeneous S-wave profile of shallow soils. In this method, a 2.5D equation is used to simulate SH-wave propagation in 2D media. The equation is solved with the staggered grid finite-difference approximation to the 4th-order in space and 2nd-order in time, to compute a synthetic wave. The misfit, defined using differences between calculated and observed waveforms, is minimised with a hybrid heuristic search method. We parameterise a 2D subsurface structural model with blocks with different depth boundaries, and S-wave velocities in each block. Numerical experiments were conducted using synthetic SH-wave data with white noise for a model having a blind layer and irregular interfaces. We could reconstruct a structure including a blind layer with reasonable computation time from surface seismic refraction data.

키워드

참고문헌

  1. Aoi, S., Iwata, T., Irikura, K., and Sanchez-Sesma, F. J., 1995, WaveformInversion for Determining the Boundary Shape of a Basin Structure: Bulletin of the Seismological Society of America, 85, 1445–1455
  2. Burger, H. R., 1992, Exploration geophysics of the shallow subsurface: Prentice-Hall Inc., 95–101
  3. Gao, F., Levander, A., Pratt, R. G., Zelt, C. A., and Fradelizio, G.-L., 2007,Waveform tomography at a groundwater contamination site: Surface reflection data: Geophysics, 72, G45–G55. doi: 10.1190/1.2752744
  4. Hayashi, K., and Suzuki, H., 2004, CMP cross-correlation analysis ofmulti-channel surface-wave data: Exploration Geophysics, 35, 7–13. doi: 10.1071/EG04007
  5. Kramer, S. L., 1996, Geotechnical Earthquake Engineering: Prentice-Hall Inc
  6. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newtonmethods in frequency seismic waveform inversion: Geophysical Journal International, 133, 341–361. doi: 10.1046/j.1365-246X.1998.00498.x
  7. Sen, M. K., Bhattacharya, B. B., and Stoffa, P. L., 1993, Nonlinear inversionof resistivity sounding data: Geophysics, 58, 496–507. doi: 10.1190/1.1443432
  8. Sheng, J., Leeds, A., Buddensiek, M., and Schuster, G. T., 2006, Early arrivalwaveform tomography on near-surface refraction data: Geophysics, 71, U47–U57. doi: 10.1190/1.2210969
  9. Yamanaka, H., and Ishida, H., 1996, Application of genetic algorithms to aninversion of surface-wave dispersion data: Bulletin of the Seismological Society of America, 86, 436–444
  10. Yamanaka, H., 2005, Comparison of performance of heuristic search methodsfor phase velocity inversion in shallow surface wave methods: Journal of Environmental&Engineering Geophysics, 10, 163–173. doi: 10.2113/JEEG10.2.163
  11. Yamanaka, H., 2007, Inversion of surface-wave phase velocity using hybridheuristic search method: Butsuri Tansa, 60, 265–275